UpliftML: A Python Package for Scalable Uplift Modeling

Overview

UpliftML: A Python Package for Scalable Uplift Modeling

upliftml

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base learners for the uplift models. Evaluation functions expect a PySpark dataframe as input.

Uplift modeling is a family of techniques for estimating the Conditional Average Treatment Effect (CATE) from experimental or observational data using machine learning. In particular, we are interested in estimating the causal effect of a treatment T on the outcome Y of an individual characterized by features X. In experimental data with binary treatments and binary outcomes, this is equivalent to estimating Pr(Y=1 | T=1, X=x) - Pr(Y=1 | T=0, X=x).

In many practical use cases the goal is to select which users to target in order to maximize the overall uplift without exceeding a specified budget or ROI constraint. In those cases, estimating uplift alone is not sufficient to make optimal decisions and we need to take into account the costs and monetary benefit incurred by the treatment.

Uplift modeling is an emerging tool for various personalization applications. Example use cases include marketing campaigns personalization and optimization, personalized pricing in e-commerce, and clinical treatment personalization.

The UpliftML library includes PySpark/H2O implementations for the following:

  • 6 metalearner approaches for uplift modeling: T-learner[1], S-learner[1], X-learner[1], R-learner[2], class variable transformation[3], transformed outcome approach[4].
  • The Retrospective Estimation[5] technique for uplift modeling under ROI constraints.
  • Uplift and iROI-based evaluation and plotting functions with bootstrapped confidence intervals. Currently implemented: ATE, ROI, iROI, CATE per category/quantile, CATE lift, Qini/AUUC curves[6], Qini/AUUC score[6], cumulative iROI curves.

For detailed information about the package, read the UpliftML documentation.

Installation

Install the latest release from PyPI:

$ pip install upliftml

Quick Start

from upliftml.models.pyspark import TLearnerEstimator
from upliftml.evaluation import estimate_and_plot_qini
from upliftml.datasets import simulate_randomized_trial
from pyspark.ml.classification import LogisticRegression


# Read/generate the dataset and convert it to Spark if needed
df_pd = simulate_randomized_trial(n=2000, p=6, sigma=1.0, binary_outcome=True)
df_spark = spark.createDataFrame(df_pd)

# Split the data into train, validation, and test sets
df_train, df_val, df_test = df_spark.randomSplit([0.5, 0.25, 0.25])

# Preprocess the datasets (for implementation of get_features_vector, see the full example notebook)
num_features = [col for col in df_spark.columns if col.startswith('feature')]
cat_features = []
df_train_assembled = get_features_vector(df_train, num_features, cat_features)
df_val_assembled = get_features_vector(df_val, num_features, cat_features)
df_test_assembled = get_features_vector(df_test, num_features, cat_features)

# Build a two-model estimator
model = TLearnerEstimator(base_model_class=LogisticRegression,
                          base_model_params={'maxIter': 15},
                          predictors_colname='features',
                          target_colname='outcome',
                          treatment_colname='treatment',
                          treatment_value=1,
                          control_value=0)
model.fit(df_train_assembled, df_val_assembled)

# Apply the model to test data
df_test_eval = model.predict(df_test_assembled)

# Evaluate performance on the test set
qini_values, ax = estimate_and_plot_qini(df_test_eval)

For complete examples with more estimators and evaluation functions, see the demo notebooks in the examples folder.

Contributing

If interested in contributing to the package, get started by reading our contributor guidelines.

License

The project is licensed under Apache 2.0 License

Citation

If you use UpliftML, please cite it as follows:

Irene Teinemaa, Javier Albert, Nam Pham. UpliftML: A Python Package for Scalable Uplift Modeling. https://github.com/bookingcom/upliftml, 2021. Version 0.0.1.

@misc{upliftml,
  author={Irene Teinemaa, Javier Albert, Nam Pham},
  title={{UpliftML}: {A Python Package for Scalable Uplift Modeling}},
  howpublished={https://github.com/bookingcom/upliftml},
  note={Version 0.0.1},
  year={2021}
}

Resources

Documentation:

Tutorials and blog posts:

Related packages:

  • CausalML: a Python package for uplift modeling and causal inference with machine learning
  • EconML: a Python package for estimating heterogeneous treatment effects from observational data via machine learning

References

  1. Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, and Bin Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 2019.
  2. Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. arXiv preprint arXiv:1712.04912, 2017.
  3. Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data. ICML Workshop on Clinical Data Analysis, 2012.
  4. Susan Athey and Guido W. Imbens. Machine learning methods for estimating heterogeneous causal effects. stat, 1050(5), 2015.
  5. Dmitri Goldenberg, Javier Albert, Lucas Bernardi, Pablo Estevez Castillo. Free Lunch! Retrospective Uplift Modeling for Dynamic Promotions Recommendation within ROI Constraints. In Fourteenth ACM Conference on Recommender Systems (pp. 486-491), 2020.
  6. Nicholas J Radcliffe and Patrick D Surry. Real-world uplift modelling with significance based uplift trees. White Paper tr-2011-1, Stochastic Solutions, 2011.
Owner
Booking.com
Open source projects and forks of projects we use internally (for better upstream collaboration)
Booking.com
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining

**Tutorials, examples, collections, and everything else that falls into the categories: pattern classification, machine learning, and data mining.** S

Sebastian Raschka 4k Dec 30, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
AP1 Transcription Factor Binding Site Prediction

A machine learning project that predicted binding sites of AP1 transcription factor, using ChIP-Seq data and local DNA shape information.

1 Jan 21, 2022
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021