In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

Overview

模式识别大作业——人脸检测与识别平台

本项目是一个简易的人脸检测识别平台,提供了人脸信息录入人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,前后端交互采用 flask。

0 环境依赖

flask==2.0.1
werkzeug==2.0.1
torch==1.10.1
torchvision==0.11.1
pillow==8.2.0

1 文件结构

image-20211121230548707

MTCNN_FaceNet:人脸检测算法接口

simplified:人脸识别算法接口

static:静态资源文件夹(包含数据库)

templates:前端Html框架

app.py:前后端交互flask框架

2 人脸识别算法——facenet

  • 一次性导入数据库:使用 face_in.py,请将数据库中每个人组织成单个文件夹的形式,如图

    image-20211121230548707

    • 格式为 python face_in.py -i -d
    • 样例输入:python face_in.py -i In_data -d dataset.json
    • 样例输出:在当前工作目录下生成(default)名为"dataset.json"的文件,即为数据库
    • 若为直接调用函数的话,传入包含上面两种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>} 的参数
  • 添加单个人像:使用 face_append.py,格式为 python face_append.py -i -n -d

    • 样例输入:python face_append.py -i In_data/acatsa/acatsa.1.jpg -n acatsa -d dataset.json
    • 样例输出:修改指定的 dataset.json,向其中添加新的人脸数据
    • 若为直接调用函数的话,传入包含上面三种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>, 'name':<>} 的参数
  • 从数据库中判别人脸:使用 classify_func.py,格式为 python classify_func.py -i -d

    • 样例输入: python classify_func.py -i In_data/acatsa/acatsa.1.jpg -d dataset.json
    • 样例输出:'acatsa'
    • 若为直接调用函数的话,传入包含上面三种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>} 的参数
  • 剪切人脸 和 输出特征向量的 接口,见 interface.py 中的 mtcnn_single() 和 embedding_single() 函数

    • mtcnn_single()
      • 输入:字典,{'image_path':<>, 'save_path':< default:None >}
      • 输出:返回剪切后的图片,同时在 save_path 保存剪切后的图片
    • embedding_single()
      • 输入:字典, {'image_path':<>}
      • 输出:返回编码向量
  • 一键将图片库中人脸进行 mtcnn 剪裁,见 mtcnn_trans() 函数

    • 输入:字典,{'image_path':<>}

    • 输出:无返回值,剪裁后替换原有图片位置

    • 注意:需要图片库的组织形式如本文开头 face_in.py 的要求那样见 mtcnn_trans() 函数

  • classify_test() 函数

    • 输入:字典,{'img_path':<>, 'dataset_path':<>, 'origin_data':<>}
      • img_path,输入图片的路径位置
      • dataset_path,之前保存的数据 json
      • origin_data,图片的保存位置,即各个人脸的总保存位置
      • image-20211225172640828
      • 就像上面这样的话,origin_data = 'In_data'
    • 输出:
      • 若找到匹配的人脸。返回路径,示例:'In_data/acatsa/acatsa_1.jpg'
      • 若未找到,返回字符串 'no matched people'

3 人脸检测算法——mtcnn

4 平台使用

本平台采用flask框架搭建,运行时,在flask_FC文件夹下打开终端,运行如下指令:

python -m flask run

在浏览器中输入网址 http://127.0.0.1:5000/

前端设置了两个接口,分别进行信息录入人脸截图识别。将新录入的人脸图片传入后端,可利用mtcnn算法进行人脸检测,在数据库中加入该用户的人脸信息;将视频流截图后的图片传入后端,可利用facenet算法进行人脸识别,在后台数据库中信息匹配,返回识别成功或错误信息。

image-20211225172640828

4.1 人脸信息录入

form表单将文件流传入后端 —— mtcnn接口检测人脸 —— DataBase中更新图片信息 —— dataset.json中更新编码信息 —— 检测人脸图片返回前端

aaa.html

">
<form action="/" id="uploadForm" method="post" enctype="multipart/form-data" >
	<button class="btn btn-danger" type="submit" >
      <h3>Enter Photo to experienceh3> 
    button>
	<input type="file" name="photo">
form>

app.py

@app.route('/', methods=['GET', 'POST'])
def upinfo():
    if request.method == 'POST':
        if request.files.get('photo'):
            # 创建文件夹,保存录入图片
            photo = request.files.get('photo')
            basepath = os.path.dirname(__file__)
            filename = secure_filename(photo.filename)
            uploadpath = os.path.join(basepath, 'static/DataBase', filename[:-4], filename)
            path = os.path.join(basepath, 'static/DataBase', filename[:-4])
            if not path:
                os.makedirs(path)

            Reshape = transforms.Resize((160, 160))
            trans = transforms.Compose([Reshape])
            img = trans(tojpg(Image.open(photo)))
            save_path = uploadpath
            newphoto = mtcnn_single(img, save_path=save_path)

            # 更新dataset.json
            args = {'image_path': uploadpath, "dataset_path": 'static/face_dataset.json', 'name': filename[:-4]}
            face_append(args)
            return render_template('aaa.html', output='DataBase/' + filename[:-4] + '/' + filename)

    return render_template('aaa.html')

4.2 视频流截图检测

前端视频流截图传入后端 —— facenet接口识别人脸 —— 后端数据库匹配 —— 返回数据库已录入图片(匹配成功)/返回失败信息

aaa.html

">
<video id="myVideo" autoplay>video>
			<script>

				let v = document.getElementById("myVideo");

				//create a canvas to grab an image for upload
				let imageCanvas = document.createElement('canvas');
				let imageCtx = imageCanvas.getContext("2d");

				//Add file blob to a form and post
				function postFile(file) {
					let formdata = new FormData();
					formdata.append("image", file);
					let xhr = new XMLHttpRequest();
					xhr.open('POST', 'http://localhost:5000/', true);
					xhr.onload = function () {
						if (this.status === 200){
							var path = JSON.parse(this.response)['path']
							console.log(this.response['path']);
							$('#img').attr('src',path);
						}
						else
							console.error(xhr);
					};
					xhr.send(formdata);
				}

				//Get the image from the canvas
				function sendImagefromCanvas() {

					//Make sure the canvas is set to the current video size
					imageCanvas.width = v.videoWidth;
					imageCanvas.height = v.videoHeight;

					imageCtx.drawImage(v, 0, 0, v.videoWidth, v.videoHeight);

					//Convert the canvas to blob and post the file
					imageCanvas.toBlob(postFile, 'image/jpeg');
				}

				//Take a picture on click
				v.onclick = function() {
					console.log('click');
					sendImagefromCanvas();
				};

				window.onload = function () {

					//Get camera video
					navigator.mediaDevices.getUserMedia({video: {width: 640, height: 360}, audio: false})
						.then(stream => {
							v.srcObject = stream;
						})
						.catch(err => {
							console.log('navigator.getUserMedia error: ', err)
						});

				};

			script>

app.py

@app.route('/', methods=['GET', 'POST'])
def upinfo():
    if request.method == 'POST':
        if request.files['image']:
            photo = request.files['image']
            basepath = os.path.dirname(__file__)
            filename = secure_filename(photo.filename)
            uploadpath = os.path.join(basepath, 'static/screenshot', filename)
            photo.save(uploadpath + '.jpg')

            Reshape = transforms.Resize((160, 160))
            trans = transforms.Compose([Reshape])
            img = trans(tojpg(Image.open(photo)))
            save_path = 'static/recognized_screenshot/' + "recognized_" + filename + '.jpg'
            newphoto = mtcnn_single(img, save_path=save_path)

            uploadpath = os.path.join(basepath, 'static/recognized_screenshot', 'recognized_'+filename)
            args = {'img_path': uploadpath + '.jpg', 'dataset_path': 'static/face_dataset.json',
                    'origin_data': 'static/DataBase'}
            out = classify_test(args)
            if out != "no matched people":
                print("数据库存储路径:" + out)
                print("识别成功!")
            else:
                print(out)
                print("数据库中不存在该人脸信息!")

            return {'path': out}

    return render_template('aaa.html')
Owner
Xuhua Huang
Xuhua Huang
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023