In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

Overview

模式识别大作业——人脸检测与识别平台

本项目是一个简易的人脸检测识别平台,提供了人脸信息录入人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,前后端交互采用 flask。

0 环境依赖

flask==2.0.1
werkzeug==2.0.1
torch==1.10.1
torchvision==0.11.1
pillow==8.2.0

1 文件结构

image-20211121230548707

MTCNN_FaceNet:人脸检测算法接口

simplified:人脸识别算法接口

static:静态资源文件夹(包含数据库)

templates:前端Html框架

app.py:前后端交互flask框架

2 人脸识别算法——facenet

  • 一次性导入数据库:使用 face_in.py,请将数据库中每个人组织成单个文件夹的形式,如图

    image-20211121230548707

    • 格式为 python face_in.py -i -d
    • 样例输入:python face_in.py -i In_data -d dataset.json
    • 样例输出:在当前工作目录下生成(default)名为"dataset.json"的文件,即为数据库
    • 若为直接调用函数的话,传入包含上面两种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>} 的参数
  • 添加单个人像:使用 face_append.py,格式为 python face_append.py -i -n -d

    • 样例输入:python face_append.py -i In_data/acatsa/acatsa.1.jpg -n acatsa -d dataset.json
    • 样例输出:修改指定的 dataset.json,向其中添加新的人脸数据
    • 若为直接调用函数的话,传入包含上面三种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>, 'name':<>} 的参数
  • 从数据库中判别人脸:使用 classify_func.py,格式为 python classify_func.py -i -d

    • 样例输入: python classify_func.py -i In_data/acatsa/acatsa.1.jpg -d dataset.json
    • 样例输出:'acatsa'
    • 若为直接调用函数的话,传入包含上面三种信息的字典即可,输出不变
      • 即类似 {'image_path':<>, 'dataset_path':<>} 的参数
  • 剪切人脸 和 输出特征向量的 接口,见 interface.py 中的 mtcnn_single() 和 embedding_single() 函数

    • mtcnn_single()
      • 输入:字典,{'image_path':<>, 'save_path':< default:None >}
      • 输出:返回剪切后的图片,同时在 save_path 保存剪切后的图片
    • embedding_single()
      • 输入:字典, {'image_path':<>}
      • 输出:返回编码向量
  • 一键将图片库中人脸进行 mtcnn 剪裁,见 mtcnn_trans() 函数

    • 输入:字典,{'image_path':<>}

    • 输出:无返回值,剪裁后替换原有图片位置

    • 注意:需要图片库的组织形式如本文开头 face_in.py 的要求那样见 mtcnn_trans() 函数

  • classify_test() 函数

    • 输入:字典,{'img_path':<>, 'dataset_path':<>, 'origin_data':<>}
      • img_path,输入图片的路径位置
      • dataset_path,之前保存的数据 json
      • origin_data,图片的保存位置,即各个人脸的总保存位置
      • image-20211225172640828
      • 就像上面这样的话,origin_data = 'In_data'
    • 输出:
      • 若找到匹配的人脸。返回路径,示例:'In_data/acatsa/acatsa_1.jpg'
      • 若未找到,返回字符串 'no matched people'

3 人脸检测算法——mtcnn

4 平台使用

本平台采用flask框架搭建,运行时,在flask_FC文件夹下打开终端,运行如下指令:

python -m flask run

在浏览器中输入网址 http://127.0.0.1:5000/

前端设置了两个接口,分别进行信息录入人脸截图识别。将新录入的人脸图片传入后端,可利用mtcnn算法进行人脸检测,在数据库中加入该用户的人脸信息;将视频流截图后的图片传入后端,可利用facenet算法进行人脸识别,在后台数据库中信息匹配,返回识别成功或错误信息。

image-20211225172640828

4.1 人脸信息录入

form表单将文件流传入后端 —— mtcnn接口检测人脸 —— DataBase中更新图片信息 —— dataset.json中更新编码信息 —— 检测人脸图片返回前端

aaa.html

">
<form action="/" id="uploadForm" method="post" enctype="multipart/form-data" >
	<button class="btn btn-danger" type="submit" >
      <h3>Enter Photo to experienceh3> 
    button>
	<input type="file" name="photo">
form>

app.py

@app.route('/', methods=['GET', 'POST'])
def upinfo():
    if request.method == 'POST':
        if request.files.get('photo'):
            # 创建文件夹,保存录入图片
            photo = request.files.get('photo')
            basepath = os.path.dirname(__file__)
            filename = secure_filename(photo.filename)
            uploadpath = os.path.join(basepath, 'static/DataBase', filename[:-4], filename)
            path = os.path.join(basepath, 'static/DataBase', filename[:-4])
            if not path:
                os.makedirs(path)

            Reshape = transforms.Resize((160, 160))
            trans = transforms.Compose([Reshape])
            img = trans(tojpg(Image.open(photo)))
            save_path = uploadpath
            newphoto = mtcnn_single(img, save_path=save_path)

            # 更新dataset.json
            args = {'image_path': uploadpath, "dataset_path": 'static/face_dataset.json', 'name': filename[:-4]}
            face_append(args)
            return render_template('aaa.html', output='DataBase/' + filename[:-4] + '/' + filename)

    return render_template('aaa.html')

4.2 视频流截图检测

前端视频流截图传入后端 —— facenet接口识别人脸 —— 后端数据库匹配 —— 返回数据库已录入图片(匹配成功)/返回失败信息

aaa.html

">
<video id="myVideo" autoplay>video>
			<script>

				let v = document.getElementById("myVideo");

				//create a canvas to grab an image for upload
				let imageCanvas = document.createElement('canvas');
				let imageCtx = imageCanvas.getContext("2d");

				//Add file blob to a form and post
				function postFile(file) {
					let formdata = new FormData();
					formdata.append("image", file);
					let xhr = new XMLHttpRequest();
					xhr.open('POST', 'http://localhost:5000/', true);
					xhr.onload = function () {
						if (this.status === 200){
							var path = JSON.parse(this.response)['path']
							console.log(this.response['path']);
							$('#img').attr('src',path);
						}
						else
							console.error(xhr);
					};
					xhr.send(formdata);
				}

				//Get the image from the canvas
				function sendImagefromCanvas() {

					//Make sure the canvas is set to the current video size
					imageCanvas.width = v.videoWidth;
					imageCanvas.height = v.videoHeight;

					imageCtx.drawImage(v, 0, 0, v.videoWidth, v.videoHeight);

					//Convert the canvas to blob and post the file
					imageCanvas.toBlob(postFile, 'image/jpeg');
				}

				//Take a picture on click
				v.onclick = function() {
					console.log('click');
					sendImagefromCanvas();
				};

				window.onload = function () {

					//Get camera video
					navigator.mediaDevices.getUserMedia({video: {width: 640, height: 360}, audio: false})
						.then(stream => {
							v.srcObject = stream;
						})
						.catch(err => {
							console.log('navigator.getUserMedia error: ', err)
						});

				};

			script>

app.py

@app.route('/', methods=['GET', 'POST'])
def upinfo():
    if request.method == 'POST':
        if request.files['image']:
            photo = request.files['image']
            basepath = os.path.dirname(__file__)
            filename = secure_filename(photo.filename)
            uploadpath = os.path.join(basepath, 'static/screenshot', filename)
            photo.save(uploadpath + '.jpg')

            Reshape = transforms.Resize((160, 160))
            trans = transforms.Compose([Reshape])
            img = trans(tojpg(Image.open(photo)))
            save_path = 'static/recognized_screenshot/' + "recognized_" + filename + '.jpg'
            newphoto = mtcnn_single(img, save_path=save_path)

            uploadpath = os.path.join(basepath, 'static/recognized_screenshot', 'recognized_'+filename)
            args = {'img_path': uploadpath + '.jpg', 'dataset_path': 'static/face_dataset.json',
                    'origin_data': 'static/DataBase'}
            out = classify_test(args)
            if out != "no matched people":
                print("数据库存储路径:" + out)
                print("识别成功!")
            else:
                print(out)
                print("数据库中不存在该人脸信息!")

            return {'path': out}

    return render_template('aaa.html')
Owner
Xuhua Huang
Xuhua Huang
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020