Export CenterPoint PonintPillars ONNX Model For TensorRT

Overview

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT

Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I implement some code to export CenterPoint-PonintPillars ONNX model and deploy the onnx model using TensorRT.

Center-based 3D Object Detection and Tracking

3D Object Detection and Tracking using center points in the bird-eye view.

Center-based 3D Object Detection and Tracking,
Tianwei Yin, Xingyi Zhou, Philipp Krähenbühl,
arXiv technical report (arXiv 2006.11275)

@article{yin2020center,
  title={Center-based 3D Object Detection and Tracking},
  author={Yin, Tianwei and Zhou, Xingyi and Kr{\"a}henb{\"u}hl, Philipp},
  journal={arXiv:2006.11275},
  year={2020},
}

NEWS

[2021-01-06] CenterPoint v1.0 is released. Without bells and whistles, we rank first among all Lidar-only methods on Waymo Open Dataset with a single model that runs at 11 FPS. Check out CenterPoint's model zoo for Waymo and nuScenes.

[2020-12-11] 3 out of the top 4 entries in the recent NeurIPS 2020 nuScenes 3D Detection challenge used CenterPoint. Congratualations to other participants and please stay tuned for more updates on nuScenes and Waymo soon.

Contact

Any questions or suggestions are welcome!

Tianwei Yin [email protected] Xingyi Zhou [email protected]

Abstract

Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model method by a large margin and ranks first among all Lidar-only submissions.

Highlights

  • Simple: Two sentences method summary: We use standard 3D point cloud encoder with a few convolutional layers in the head to produce a bird-eye-view heatmap and other dense regression outputs including the offset to centers in the previous frame. Detection is a simple local peak extraction with refinement, and tracking is a closest-distance matching.

  • Fast and Accurate: Our best single model achieves 71.9 mAPH on Waymo and 65.5 NDS on nuScenes while running at 11FPS+.

  • Extensible: Simple replacement for anchor-based detector in your novel algorithms.

Main results

3D detection on Waymo test set

#Frame Veh_L2 Ped_L2 Cyc_L2 MAPH FPS
VoxelNet 1 71.9 67.0 68.2 69.0 13
VoxelNet 2 73.0 71.5 71.3 71.9 11

3D detection on Waymo domain adaptation test set

#Frame Veh_L2 Ped_L2 Cyc_L2 MAPH FPS
VoxelNet 2 56.1 47.8 65.2 56.3 11

3D detection on nuScenes test set

MAP ↑ NDS ↑ PKL ↓ FPS ↑
VoxelNet 58.0 65.5 0.69 11

3D tracking on Waymo test set

#Frame Veh_L2 Ped_L2 Cyc_L2 MOTA FPS
VoxelNet 2 59.4 56.6 60.0 58.7 11

3D Tracking on nuScenes test set

AMOTA ↑ AMOTP ↓
VoxelNet (flip test) 63.8 0.555

All results are tested on a Titan RTX GPU with batch size 1.

Third-party resources

  • AFDet: another work inspired by CenterPoint achieves good performance on KITTI/Waymo dataset.
  • mmdetection3d: CenterPoint in mmdet framework.

Use CenterPoint

Installation

Please refer to INSTALL to set up libraries needed for distributed training and sparse convolution.

First download the model (By default, centerpoint_pillar_512) and put it in work_dirs/centerpoint_pillar_512_demo.

We provide a driving sequence clip from the nuScenes dataset. Donwload the folder and put in the main directory.
Then run a demo by python tools/demo.py. If setup corectly, you will see an output video like (red is gt objects, blue is the prediction):

Benchmark Evaluation and Training

Please refer to GETTING_START to prepare the data. Then follow the instruction there to reproduce our detection and tracking results. All detection configurations are included in configs and we provide the scripts for all tracking experiments in tracking_scripts.

Export ONNX

I divide Pointpillars model into two parts, pfe(include PillarFeatureNet) and rpn(include RPN and CenterHead). The PointPillarsScatter isn't exported. I use ScatterND node instead of PointPillarsScatter.

  • Install packages

    pip install onnx onnx-simplifier onnxruntime
  • step 1. Download the trained model(latest.pth) and nuscenes mini dataset(v1.0-mini.tar)

  • step 2 Prepare dataset. Please refer to docs/NUSC.md

  • step 3. Export pfe.onnx and rpn.onnx

    python tool/export_pointpillars_onnx.py
  • step 4. Use onnx-simplify and scripte to simplify pfe.onnx and rpn.onnx.

    python tool/simplify_model.py
  • step 5. Merge pfe.onnx and rpn.onnx. We use ScatterND node to connect pfe and rpn. TensorRT doesn't support ScatterND operater. If you want to run CenterPoint-pointpillars by TensorRT, you can run pfe.onnx and rpn.onnx respectively.

    python tool/merge_pfe_rpn_model.py

    All onnx model are saved in onnx_model.

    I add an argument(export_onnx) for export onnx model in config file

    model = dict(
      type="PointPillars",
      pretrained=None,
      export_onnx=True, # for export onnx model
      reader=dict(
          type="PillarFeatureNet",
          num_filters=[64, 64],
          num_input_features=5,
          with_distance=False,
          voxel_size=(0.2, 0.2, 8),
          pc_range=(-51.2, -51.2, -5.0, 51.2, 51.2, 3.0),
          export_onnx=True, # for export onnx model
      ),
      backbone=dict(type="PointPillarsScatter", ds_factor=1),
      neck=dict(
          type="RPN",
          layer_nums=[3, 5, 5],
          ds_layer_strides=[2, 2, 2],
          ds_num_filters=[64, 128, 256],
          us_layer_strides=[0.5, 1, 2],
          us_num_filters=[128, 128, 128],
          num_input_features=64,
          logger=logging.getLogger("RPN"),
      ),

Centerpoint Pointpillars For TensorRT

see Readme

License

CenterPoint is release under MIT license (see LICENSE). It is developed based on a forked version of det3d. We also incorperate a large amount of code from CenterNet and CenterTrack. See the NOTICE for details. Note that both nuScenes and Waymo datasets are under non-commercial licenses.

Acknowlegement

This project is not possible without multiple great opensourced codebases. We list some notable examples below.

Owner
CarkusL
CarkusL
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022