Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Overview

Adversarial Long-Tail

This repository contains the PyTorch implementation of the paper:

Adversarial Robustness under Long-Tailed Distribution, CVPR 2021 (Oral)

Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, Dahua Lin

Real-world data usually exhibits a long-tailed distribution, while previous works on adversarial robustness mainly focus on balanced datasets. To push adversarial robustness towards more realistic scenarios, in this work, we investigate the adversarial vulnerability as well as defense under long-tailed distributions. We perform a systematic study on existing Long-Tailed recognition (LT) methods in conjunction with the Adversarial Training framework (AT) and obtain several valuable observations. We then propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant classifier and data re-balancing via both margin engineering at the training stage and boundary adjustment during inference.

This repository includes:

  • Code for the LT methods applied with AT framework in our study.
  • Code and pre-trained models for our method.

Environment

Datasets

We use the CIFAR-10-LT and CIFAR-100-LT datasets. The data will be automatically downloaded and converted.

Usage

Baseline

To train and evaluate a baseline model, run the following commands:

# Vanilla FC for CIFAR-10-LT
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat.yaml
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat.yaml -a ALL

# Vanilla FC for CIFAR-100-LT
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat.yaml
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat.yaml -a ALL

Here -a ALL denotes that we evaluate five attacks including FGSM, PGD, MIM, CW, and AutoAttack.

Long-tailed recognition methods with adversarial training framework

We provide scripts for the long-tailed recognition methods applied with adversarial training framework as reported in our study. We mainly provide config files for CIFAR-10-LT. For CIFAR-100-LT, simply set imbalance_ratio=0.1, dataset=CIFAR100, and num_classes=100 in the config file, and don't forget to change the model_dir (working directory to save the log files and checkpoints) and model_path (checkpoint to evaluate by test.py).

Methods applied at training time.

Methods applied at training stage include class-aware re-sampling and different kinds of cost-sensitive learning.

Train the models with the corresponding config files:

# Vanilla Cos
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_cos.yaml

# Class-aware margin
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_LDAM.yaml

# Cosine with margin
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_cos_HE.yaml

# Class-aware temperature
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_CDT.yaml

# Class-aware bias
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_logitadjust.yaml

# Hard-exmaple mining
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_focal.yaml

# Re-sampling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rs-whole.yaml

# Re-weighting (based on effective number of samples)
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_outer_CB.yaml

Evaluate the models with the same config files as training time:

python test.py <the-config-file-used-for-training>.yaml -a ALL

Methods applied via fine-tuning.

Fine-tuning based methods propose to re-train or fine-tune the classifier via data re-balancing techniques with the backbone frozen.

Train a baseline model first, and then set the load_model in the following config files as <folder-name-of-the-baseline-model>/epoch80.pt (path to the last-epoch checkpoint; we have already aligned the settings of directories in this repo). Run fine-tuning by:

# One-epoch re-sampling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rs-fine.yaml

# One-epoch re-weighting
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_rw-fine.yaml 

# Learnable classifier scale
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_lws.yaml 

Evaluate the models with the same config files as training time:

python test.py <the-config-file-used-for-training>.yaml -a ALL

Methods applied at inference time.

Methods applied at the inference stage based on a vanilla trained model would usually conduct a different forwarding process from the training stage to address shifted data distributions from train-set to test-set.

Similarly, train a baseline model first, and this time set the model_path in the following config files as <folder-name-of-the-baseline-model>/epoch80.pt (path to the last-epoch checkpoint; we have already aligned the settings of directories in this repo). Run evaluation with a certain inference-time strategy by:

# Classifier re-scaling
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_CDT.yaml -a ALL

# Classifier normalization
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_norm.yaml -a ALL

# Class-aware bias
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_post_logitadjust.yaml -a ALL

Sometimes a baseline model is not applicable, since a cosine classifier is used with some statistics recorded during training. For example, to apply the method below, train the model by:

# Feature disentangling
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_TDESim.yaml 

Change the posthoc setting in the config file as True, and evaluate the model by:

python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_TDESim.yaml -a ALL

Attention: methods that involve loss temperatures or classifier scaling operations could be at the risk of producing unexpectedly higher robustness accuracy for PGD and MIM attacks, which is NOT reliable as analyzed in Sec.3.3 of our paper. This phenomenon sometimes could be observed at validation time during training. As a result, for a more reliable evaluation, it is essential to keep a similar level of logit scales during both training and inference stage.

Our method

The config files used for training and inference stage could be different, denoted by <config-prefix>_train.yaml and <config-prefix>_eval.yaml, respectively.

Training stage

Train the models by running:

# CIFAR-10-LT
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_N_train.yaml
python train.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_R_train.yaml

# CIFAR-100-LT
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_N_train.yaml
python train.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_R_train.yaml

Attention: notice that by the end of the training stage, the evaluation results with the original training config file would miss the re-balancing strategy applied at inference state, thus we should change to the evaluation config file to complete the process.

Inference stage

Evaluate the models by running:

# CIFAR-10-LT
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_N_eval.yaml -a ALL
python test.py configs/CIFAR10_LT/cifar10_LT0.02_pgdat_robal_R_eval.yaml -a ALL

# CIFAR-100-LT
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_N_eval.yaml -a ALL
python test.py configs/CIFAR100_LT/cifar100_LT0.1_pgdat_robal_R_eval.yaml -a ALL

Pre-trained models

We provide the pre-trained models for our methods above. Download and extract them to the ./checkpoints directory, and produce the results with eval.yaml in the corresponding folders by running:

python test.py checkpoints/<folder-name-of-the-pretrained-model>/eval.yaml -a ALL

License and Citation

If you find our code or paper useful, please cite our paper:

@inproceedings{wu2021advlt,
 author =  {Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin},
 title = {Adversarial Robustness under Long-Tailed Distribution},
 booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2021}
 }

Acknowledgement

We thank the authors for the following repositories for code reference: TRADES, AutoAttack, ADT, Class-Balanced Loss, LDAM-DRW, OLTR, AT-HE, Classifier-Balancing, mma_training, TDE, etc.

Contact

Please contact @wutong16 for questions, comments and reporting bugs.

Owner
Tong WU
Tong WU
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Codes for 'Dual Parameterization of Sparse Variational Gaussian Processes'

Dual Parameterization of Sparse Variational Gaussian Processes Documentation | Notebooks | API reference Introduction This repository is the official

AaltoML 7 Dec 23, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification"

hypergraph_reid Implementation of "Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification" If you find this help your research,

62 Dec 21, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022