Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

Overview

UNITER: UNiversal Image-TExt Representation Learning

This is the official repository of UNITER (ECCV 2020). This repository currently supports finetuning UNITER on NLVR2, VQA, VCR, SNLI-VE, Image-Text Retrieval for COCO and Flickr30k, and Referring Expression Comprehensions (RefCOCO, RefCOCO+, and RefCOCO-g). Both UNITER-base and UNITER-large pre-trained checkpoints are released. UNITER-base pre-training with in-domain data is also available.

Overview of UNITER

Some code in this repo are copied/modified from opensource implementations made available by PyTorch, HuggingFace, OpenNMT, and Nvidia. The image features are extracted using BUTD.

Requirements

We provide Docker image for easier reproduction. Please install the following:

Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.

Quick Start

NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE to get our latest pretrained checkpoints. This will download both the base and large models.

We use NLVR2 as an end-to-end example for using this code base.

  1. Download processed data and pretrained models with the following command.

    bash scripts/download_nlvr2.sh $PATH_TO_STORAGE

    After downloading you should see the following folder structure:

    ├── ann
    │   ├── dev.json
    │   └── test1.json
    ├── finetune
    │   ├── nlvr-base
    │   └── nlvr-base.tar
    ├── img_db
    │   ├── nlvr2_dev
    │   ├── nlvr2_dev.tar
    │   ├── nlvr2_test
    │   ├── nlvr2_test.tar
    │   ├── nlvr2_train
    │   └── nlvr2_train.tar
    ├── pretrained
    │   └── uniter-base.pt
    └── txt_db
        ├── nlvr2_dev.db
        ├── nlvr2_dev.db.tar
        ├── nlvr2_test1.db
        ├── nlvr2_test1.db.tar
        ├── nlvr2_train.db
        └── nlvr2_train.db.tar
    
  2. Launch the Docker container for running the experiments.

    # docker image should be automatically pulled
    source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
        $PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained

    The launch script respects $CUDA_VISIBLE_DEVICES environment variable. Note that the source code is mounted into the container under /src instead of built into the image so that user modification will be reflected without re-building the image. (Data folders are mounted into the container separately for flexibility on folder structures.)

  3. Run finetuning for the NLVR2 task.

    # inside the container
    python train_nlvr2.py --config config/train-nlvr2-base-1gpu.json
    
    # for more customization
    horovodrun -np $N_GPU python train_nlvr2.py --config $YOUR_CONFIG_JSON
  4. Run inference for the NLVR2 task and then evaluate.

    # inference
    python inf_nlvr2.py --txt_db /txt/nlvr2_test1.db/ --img_db /img/nlvr2_test/ \
        --train_dir /storage/nlvr-base/ --ckpt 6500 --output_dir . --fp16
    
    # evaluation
    # run this command outside docker (tested with python 3.6)
    # or copy the annotation json into mounted folder
    python scripts/eval_nlvr2.py ./results.csv $PATH_TO_STORAGE/ann/test1.json

    The above command runs inference on the model we trained. Feel free to replace --train_dir and --ckpt with your own model trained in step 3. Currently we only support single GPU inference.

  5. Customization

    # training options
    python train_nlvr2.py --help
    • command-line argument overwrites JSON config files
    • JSON config overwrites argparse default value.
    • use horovodrun to run multi-GPU training
    • --gradient_accumulation_steps emulates multi-gpu training
  6. Misc.

    # text annotation preprocessing
    bash scripts/create_txtdb.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/ann
    
    # image feature extraction (Tested on Titan-Xp; may not run on latest GPUs)
    bash scripts/extract_imgfeat.sh $PATH_TO_IMG_FOLDER $PATH_TO_IMG_NPY
    
    # image preprocessing
    bash scripts/create_imgdb.sh $PATH_TO_IMG_NPY $PATH_TO_STORAGE/img_db

    In case you would like to reproduce the whole preprocessing pipeline.

Downstream Tasks Finetuning

VQA

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vqa.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vqa.py --config config/train-vqa-base-4gpu.json \
        --output_dir $VQA_EXP
    
  3. inference
    python inf_vqa.py --txt_db /txt/vqa_test.db --img_db /img/coco_test2015 \
        --output_dir $VQA_EXP --checkpoint 6000 --pin_mem --fp16
    
    The result file will be written at $VQA_EXP/results_test/results_6000_all.json, which can be submitted to the evaluation server

VCR

NOTE: train and inference should be ran inside the docker container

  1. download data
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 4 python train_vcr.py --config config/train-vcr-base-4gpu.json \
        --output_dir $VCR_EXP
    
  3. inference
    horovodrun -np 4 python inf_vcr.py --txt_db /txt/vcr_test.db \
        --img_db "/img/vcr_gt_test/;/img/vcr_test/" \
        --split test --output_dir $VCR_EXP --checkpoint 8000 \
        --pin_mem --fp16
    
    The result file will be written at $VCR_EXP/results_test/results_8000_all.csv, which can be submitted to VCR leaderboard for evluation.

VCR 2nd Stage Pre-training

NOTE: pretrain should be ran inside the docker container

  1. download VCR data if you haven't
    bash scripts/download_vcr.sh $PATH_TO_STORAGE
    
  2. 2nd stage pre-train
    horovodrun -np 4 python pretrain_vcr.py --config config/pretrain-vcr-base-4gpu.json \
        --output_dir $PRETRAIN_VCR_EXP
    

Visual Entailment (SNLI-VE)

NOTE: train should be ran inside the docker container

  1. download data
    bash scripts/download_ve.sh $PATH_TO_STORAGE
    
  2. train
    horovodrun -np 2 python train_ve.py --config config/train-ve-base-2gpu.json \
        --output_dir $VE_EXP
    

Image-Text Retrieval

download data

bash scripts/download_itm.sh $PATH_TO_STORAGE

NOTE: Image-Text Retrieval is computationally heavy, especially on COCO.

Zero-shot Image-Text Retrieval (Flickr30k)

# every image-text pair has to be ranked; please use as many GPUs as possible
horovodrun -np $NGPU python inf_itm.py \
    --txt_db /txt/itm_flickr30k_test.db --img_db /img/flickr30k \
    --checkpoint /pretrain/uniter-base.pt --model_config /src/config/uniter-base.json \
    --output_dir $ZS_ITM_RESULT --fp16 --pin_mem

Image-Text Retrieval (Flickr30k)

  • normal finetune
    horovodrun -np 8 python train_itm.py --config config/train-itm-flickr-base-8gpu.json
    
  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-flickr-base-16gpu-hn.jgon
    

Image-Text Retrieval (COCO)

  • finetune with hard negatives
    horovodrun -np 16 python train_itm_hard_negatives.py \
        --config config/train-itm-coco-base-16gpu-hn.json
    

Referring Expressions

  1. download data
    bash scripts/download_re.sh $PATH_TO_STORAGE
    
  2. train
    python train_re.py --config config/train-refcoco-base-1gpu.json \
        --output_dir $RE_EXP
    
  3. inference and evaluation
    source scripts/eval_refcoco.sh $RE_EXP
    
    The result files will be written under $RE_EXP/results_test/

Similarly, change corresponding configs/scripts for running RefCOCO+/RefCOCOg.

Pre-tranining

download

bash scripts/download_indomain.sh $PATH_TO_STORAGE

pre-train

horovodrun -np 8 python pretrain.py --config config/pretrain-indomain-base-8gpu.json \
    --output_dir $PRETRAIN_EXP

Unfortunately, we cannot host CC/SBU features due to their large size. Users will need to process them on their own. We will provide a smaller sample for easier reference to the expected format soon.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{chen2020uniter,
  title={Uniter: Universal image-text representation learning},
  author={Chen, Yen-Chun and Li, Linjie and Yu, Licheng and Kholy, Ahmed El and Ahmed, Faisal and Gan, Zhe and Cheng, Yu and Liu, Jingjing},
  booktitle={ECCV},
  year={2020}
}

License

MIT

Owner
Yen-Chun Chen
Researcher @ Microsoft Cloud+AI. previously Machine Learning Scientist @ Stackline; M.S. student @ UNC Chapel Hill NLP group
Yen-Chun Chen
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉 What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022