FastFormers - highly efficient transformer models for NLU

Overview

FastFormers

FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Understanding (NLU) including the demo models showing 233.87x speed-up (Yes, 233x on CPU with the multi-head self-attentive Transformer architecture. This is not an LSTM or an RNN). The details of the methods and analyses are described in the paper FastFormers: Highly Efficient Transformer Models for Natural Language Understanding paper.

Notes

  • (June 3, 2021) The public onnxruntime (v1.8.0) now supports all FastFormers models. Special thanks to @yufenglee and onnxruntime team.
  • (Nov. 4, 2020) We are actively working with Hugging Face and onnxruntime team so that you can utilize the features out of the box of huggingface's transformers and onnxruntime. Please stay tuned.
  • With this repository, you can replicate the results presented in the FastFormers paper.
  • The demo models of FastFormers are implemented with SuperGLUE benchmark. Data processing pipeline is based on Alex Wang's implementation reference code for SustaiNLP which is a fork from HuggingFace's transformers repository.
  • This repository is built on top of several open source projects including transformers from HuggingFace, onnxruntime, transformers from Alex Wang, FBGEMM, TinyBERT and etc.

Requirements

  • FastFormers currently only supports Linux operating systems.
  • CPU requirements:
    • CPUs equipped with at least one, or both of AVX2 and AVX512 instruction sets are required. To get the full speed improvements and accuracy, AVX512 instruction set is required. We have tested our runtime on Intel CPUs.
  • GPU requirements:
    • To utilize 16-bit floating point speed-up, GPUs with Volta or later architectures are required.
  • onnxruntime v1.8.0+ is required to run FastFormers models.
  • This repository is a branch of transformers, so you need to uninstall pre-existing transformers in your python environment.

Installation

This repo is tested on Python 3.6 and 3.7, PyTorch 1.5.0+.

You need to uninstall pre-existing transformers package as this repository uses customized versions of it.

You need to install PyTorch 1.5.0+. Then, execute following bash commands. You need to install onnxruntime 1.8.0+.

pip install onnxruntime==1.8.0 --user --upgrade --no-deps --force-reinstall
pip uninstall transformers -y
git clone https://github.com/microsoft/fastformers
cd fastformers
pip install .

Run the demo systems

All the models used to benchmark Table 3 in the paper are publicly shared. You can use below commands to reproduce the results. Table 3 measurement was done on one of the Azure F16s_v2 instances.

Table3

The installation step needs to be done before proceeding.

  1. Download SuperGLUE dataset and decompress.

  2. Download demo model files and decompress.

wget https://github.com/microsoft/fastformers/releases/download/v0.1-model/teacher-bert-base.tar.gz
wget https://github.com/microsoft/fastformers/releases/download/v0.2-model/student-4L-312.tar.gz
wget https://github.com/microsoft/fastformers/releases/download/v0.2-model/student-pruned-8h-600.tar.gz
wget https://github.com/microsoft/fastformers/releases/download/v0.2-model/student-pruned-9h-900.tar.gz
  1. Run the teacher model (BERT-base) baseline
python3 examples/fastformers/run_superglue.py \
        --model_type bert --model_name_or_path ${teacher_model} \
        --task_name BoolQ --output_dir ${out_dir} --do_eval  \
        --data_dir ${data_dir} --per_instance_eval_batch_size 1 \
        --use_fixed_seq_length --do_lower_case --max_seq_length 512 \
        --no_cuda
  1. Run the teacher model (BERT-base) with dynamic sequence length
python3 examples/fastformers/run_superglue.py \
        --model_type bert --model_name_or_path ${teacher_model} \
        --task_name BoolQ --output_dir ${out_dir} --do_eval  \
        --data_dir ${data_dir} --per_instance_eval_batch_size 1 \
        --do_lower_case --max_seq_length 512 --no_cuda
  1. Run the distilled student model (PyTorch)
python3 examples/fastformers/run_superglue.py \
        --model_type bert --model_name_or_path ${student_model} \
        --task_name BoolQ --output_dir ${out_dir} --do_eval  \
        --data_dir ${data_dir} --per_instance_eval_batch_size 1 \
        --do_lower_case --max_seq_length 512 --no_cuda
  1. Run the distilled student with 8-bit quantization (onnxruntime)
python3 examples/fastformers/run_superglue.py \
        --model_type bert --model_name_or_path ${student_model} \
        --task_name BoolQ --output_dir ${out_dir} --do_eval \
        --data_dir ${data_dir} --per_instance_eval_batch_size 1 \
        --do_lower_case --max_seq_length 512 --use_onnxrt --no_cuda
  1. Run the distilled student with 8-bit quantization + multi-intance inference (onnxruntime)
OMP_NUM_THREADS=1 python3 examples/fastformers/run_superglue.py \
                          --model_type bert \
                          --model_name_or_path ${student_model} \
                          --task_name BoolQ --output_dir ${out_dir} --do_eval \
                          --data_dir ${data_dir} --per_instance_eval_batch_size 1 \
                          --do_lower_case --max_seq_length 512 --use_onnxrt \
                          --threads_per_instance 1 --no_cuda
  1. Run the distilled + pruned student with 8-bit quantization + multi-intance inference (onnxruntime)
OMP_NUM_THREADS=1 python3 examples/fastformers/run_superglue.py \
                          --model_type bert \
                          --model_name_or_path ${pruned_student_model} \
                          --task_name BoolQ --output_dir ${out_dir} --do_eval \
                          --data_dir ${data_dir} --per_instance_eval_batch_size 1 \
                          --do_lower_case --max_seq_length 512 --use_onnxrt \
                          --threads_per_instance 1 --no_cuda

How to create FastFormers

Training models

This is used for fine-tuning of pretrained or general distilled model (task-agnostic distillation) to the downstream tasks. Currently, BERT and RoBERTa models are supported.

Tip 1. This repository is based on transformers, so you can use huggingface's pre-trained models. (e.g. set distilroberta-base for --model_name_or_path to use distilroberta-base)

Tip 2. Before fine-tuning models, you can change the activation functions to ReLU to get better inference speed. To do this, you can download the config file of your model and manually change it to relu (hidden_act in case of BERT and ReBERTa models). Then, you can specify the config file by adding parameter (--config_name).

Tip 3. Depending on the task and the models used, you can add --do_lower_case if it give a better accuracy.

python3 examples/fastformers/run_superglue.py \
        --data_dir ${data_dir} --task_name ${task} \
        --output_dir ${out_dir} --model_type ${model_type} \
        --model_name_or_path ${model} \
        --use_gpuid ${gpuid} --seed ${seed} \
        --do_train --max_seq_length ${seq_len_train} \
        --do_eval --eval_and_save_steps ${eval_freq} --save_only_best \
        --learning_rate 0.00001 \
        --warmup_ratio 0.06 --weight_decay 0.01 \
        --per_gpu_train_batch_size 4 \
        --gradient_accumulation_steps 1 \
        --logging_steps 100 --num_train_epochs 10 \
        --overwrite_output_dir --per_instance_eval_batch_size 8

Distilling models

This is used for distilling fine-tuned teacher models into smaller student models (task-specific distillation) on the downstream tasks. As described in the paper, it is critical to initialize student models with general distilled models such as distilbert-, distilroberta-base and TinyBERT.

This command is also used to distill non-pruned models into pruned models.

This command always uses task specific logit loss between teacher and student models for the student training. You can add addtional losses for hidden states (including token mbedding) and attentions between teacher and student. To use hidden states and attentions distillation, the number of teacher layers should be multiples of the number of student layers.

python3 examples/fastformers/run_superglue.py \
        --data_dir ${data_dir} --task_name ${task} \
        --output_dir ${out_dir} --teacher_model_type ${teacher_model_type} \
        --teacher_model_name_or_path ${teacher_model} \
        --model_type ${student_model_type} --model_name_or_path ${student_model} \
        --use_gpuid ${gpuid} --seed ${seed} \
        --do_train --max_seq_length ${seq_len_train} \
        --do_eval --eval_and_save_steps ${eval_freq} --save_only_best \
        --learning_rate 0.00001 \
        --warmup_ratio 0.06 --weight_decay 0.01 \
        --per_gpu_train_batch_size 4 \
        --gradient_accumulation_steps 1 \
        --logging_steps 100 --num_train_epochs 10 \
        --overwrite_output_dir --per_instance_eval_batch_size 8 \
        --state_loss_ratio 0.1

Pruning models

This command performs structured pruning on the models described in the paper. It reduces the number of heads and the intermediate hidden states of FFN as set in the options. When the pruning is done on GPU, only 1 GPU is utilized (no multi-GPU).

To get better accuracy, you can do another round of knowledge distillation after the pruning.

python3 examples/fastformers/run_superglue.py \
        --data_dir ${data_dir} --task_name ${task} \
        --output_dir ${out_dir} --model_type ${model_type} \
        --model_name_or_path ${model} --do_eval \
        --do_prune --max_seq_length ${seq_len_train} \
        --per_instance_eval_batch_size 1 \
        --target_num_heads 8 --target_ffn_dim 600

Optimizing models on CPU (8-bit integer quantization + onnxruntime)

This command convert your PyTorch transformers models into optimized onnx format with 8-bit quantization. The converted ONNX model is saved in the directory which the original PyTorch model is located.

python3 examples/fastformers/run_superglue.py \
        --task_name ${task} \
        --model_type ${model_type} \
        --model_name_or_path ${model} \
        --convert_onnx

Optimizing models on GPU (16-bit floating point conversion)

This command convert your PyTorch transformers models into 16-bit floating point model (PyTorch). This creates a new directory named fp16 in the directory the original model is located. Then, the converted fp16 model and all necessary files are saved to the directory.

python3 examples/fastformers/run_superglue.py \
        --task_name ${task} \
        --model_type ${model_type} \
        --model_name_or_path ${model} \
        --convert_fp16

Evaluating models

This command evalutes various models with PyTorch or onnxruntime engine on the give tasks. For more detailed usage, please refer to the demo section.

OMP_NUM_THREADS=1 python3 examples/fastformers/run_superglue.py \
                          --model_type bert \
                          --model_name_or_path ${pruned_student_model} \
                          --task_name BoolQ --output_dir ${out_dir} --do_eval \
                          --data_dir ${data_dir} --per_instance_eval_batch_size 1 \
                          --do_lower_case --max_seq_length 512 --use_onnxrt \
                          --threads_per_instance 1 --no_cuda

Code of Conduct

This project has adopted the Microsoft Open Source Code of Conduct.

License

This project is licensed under the MIT License.

Comments
  • run the distilled student with 8-bit quantization (onnxruntime)

    run the distilled student with 8-bit quantization (onnxruntime)

    🐛 Bug

    Information

    Model I am using (Bert, XLNet ...): student-4L-312

    Language I am using the model on (English, Chinese ...):English

    The problem arises when using:

    • [x] the official example scripts: (give details below)
    • [ ] my own modified scripts: (give details below)

    The tasks I am working on is:

    • [x] an official GLUE/SQUaD task: (give the name)
    • [ ] my own task or dataset: (give details below)

    To reproduce

    Steps to reproduce the behavior:

    1. run the command below python examples/fastformers/run_superglue.py --model_type bert --model_name_or_path ../model/fastformers/student_model/student-4L-312 --task_name BoolQ --output_dir ./out --do_eval --data_dir ../dataset/fastformers/BoolQ --per_instance_eval_batch_size 1 --do_lower_case --max_seq_length 512 --use_onnxrt --no_cuda

    error message:

    Traceback (most recent call last):
      File "examples/fastformers/run_superglue.py", line 1901, in <module>
        main()
      File "examples/fastformers/run_superglue.py", line 1840, in main
        from onnxruntime import ExecutionMode, InferenceSession, SessionOptions
      File "/home/username/.local/lib/python3.6/site-packages/onnxruntime/__init__.py", line 13, in <module>
        from onnxruntime.capi._pybind_state import get_all_providers, get_available_providers, get_device, set_seed, \
    ImportError: cannot import name 'get_all_providers'
    

    Expected behavior

    Environment info

    • transformers version: transformers (2.11.0)
    • Platform: ubuntu16.04
    • Python version: 3.6
    • PyTorch version (GPU?): torch (1.7.0+cpu)
    • Tensorflow version (GPU?): null
    • Using GPU in script?: No
    • Using distributed or parallel set-up in script?: No
    • onnxruntime (1.4.0)
    opened by baiziyuandyufei 6
  • Fastformers/Transformers question

    Fastformers/Transformers question

    Hello!

    I was reading your paper and was looking in the HF repo and found https://github.com/huggingface/transformers/issues/8083 where it appeared that you were discussing adding your functionality to their library, however that never happened, so I am curious if you discovered something that prohibited adding this functionality. Thanks!

    opened by jmwoloso 4
  • trying to train roberta-large model for question-answering task

    trying to train roberta-large model for question-answering task

    ❓ Questions & Help

    I am trying to convert the Roberta-large model to Fastformers. I am facing this issue with data files after preprocessing

    Details

    runcate_sequences assert len(ids) > num_tokens_to_remove AssertionError

    what did lead me to this error A link to original question on Stack Overflow:

    opened by skiran252 4
  • pruned error

    pruned error

    model is bert_base When i do prune, set num_heads to 8. Before prune, shape of key(value) weight is [768, 768] After prune, shape of key(value) weight became [512, 768]

    so, saved weights can't be loaded by transformers

    opened by renmada 3
  • Integrate ZORB as an opt-in optimization

    Integrate ZORB as an opt-in optimization

    Fastformers is already impressive as is but a new paper has just been released: ZORB And it aims to become an alternative to... Backpropagation (you read this right)

    Such a breakthrough allow ~300X additional speedup to fastformers (even more in theory) while only diminishing accuracy of a few percents on many cases and actually apparently outperforming BP with a lower error count? Anyway it's a huge performance breakthrough and should be popularized by fastformers and huggingface.

    https://paperswithcode.com/paper/zorb-a-derivative-free-backpropagation Notes: Extensive testing of the variable accuracy loss would be welcome. Some activations functions needs to be adapted? (e.g Mish?)

    opened by LifeIsStrange 3
  • Optimize fine-tuned model from HuggingFace

    Optimize fine-tuned model from HuggingFace

    How to optimize an already fine-tuned model from Hugging Face?

    Congratulations on the work, it looks amazing 😊

    Details

    If there is an already fine-tuned model from Hugging Face for, let's say, generating question-answer pairs such as valhalla/t5-base-qa-qg-hl, how could it be further optimized for inference using your method? I'm a bit lost

    Thank you in advance!

    opened by ugm2 3
  • AMD CPUs should work just fine

    AMD CPUs should work just fine

    The README mentions Intel cpus are required because of the necessity of AVX256 support.

    First of all AMD cpu supports AVX 256 since a Long time (jaguar which predate zen). True AVX 256 support (not only being compatible but being twice as fast as AVX 128) came one year ago with ZEN 2 cpus.

    Zen 3 cpus are now being released and are the fastest cpus in the world and any Deep learning researchers should have them and be compatible with them, period.

    opened by LifeIsStrange 3
  • integrate with Lightning ecosystem CI

    integrate with Lightning ecosystem CI

    Hello and so happy to see you use Pytorch-Lightning! :tada: Just wondering if you already heard about quite the new Pytorch Lightning (PL) ecosystem CI where we would like to invite you to... You can check out our blog post about it: Stay Ahead of Breaking Changes with the New Lightning Ecosystem CI :zap: As you use PL framework for your cool project, we would like to enhance your experience and offer you safe updates to our future releases. At this moment, you run tests with a particular PL version, but it may accidentally happen that the next version will be incompatible with your project... :confused: We do not intend to change anything on our project side, but still here we have a solution - ecosystem CI with testing both - your and our latest development head we can find it very early and prevent releasing eventually bad version... :+1:

    What is needed to do?

    • have some tests, including PL integration
    • add config to ecosystem CI - https://github.com/PyTorchLightning/ecosystem-ci

    What will you get?

    • scheduled nightly testing configured for development/stable versions
    • slack notification if something went wrong to investigate
    • testing also on multi-GPU machine as our gift to you :rabbit:

    cc: @borda

    opened by pl-ghost 2
  • Which TinyBERT models used for student initialisation?

    Which TinyBERT models used for student initialisation?

    ❓ Questions & Help

    Details

    Hello again @ykim362,

    I'm trying to reproduce your distillation results from Section 2 of the FastFormers paper and I have a few questions I was hoping you could help with:

    1. Did you use the weights provided in the TinyBERT repo (link) or those provided by Huawei in the HuggingFace model hub (link)?
    2. Did you use General_TinyBERT(Nlayer-Ddim) or General_TinyBERT_v2(Nlayer-Ddim)?
    3. I noticed that the Huawei models on the HuggingFace hub do not appear to be compatible with the Transformers library, so e.g. I get errors like the following:
    >>> from transformers import AutoTokenizer
    >>> tokenizer = AutoTokenizer.from_pretrained("huawei-noah/TinyBERT_General_4L_312D")
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/Users/lewtun/git/transformers/src/transformers/models/auto/tokenization_auto.py", line 345, in from_pretrained
        config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
      File "/Users/lewtun/git/transformers/src/transformers/models/auto/configuration_auto.py", line 360, in from_pretrained
        raise ValueError(
    ValueError: Unrecognized model in huawei-noah/TinyBERT_General_4L_312D. Should have a `model_type` key in its config.json, or contain one of the following strings in its name: retribert, mt5, t5, mobilebert, distilbert, albert, bert-generation, camembert, xlm-roberta, pegasus, marian, mbart, mpnet, bart, blenderbot, reformer, longformer, roberta, deberta, flaubert, fsmt, squeezebert, bert, openai-gpt, gpt2, transfo-xl, xlnet, xlm-prophetnet, prophetnet, xlm, ctrl, electra, encoder-decoder, funnel, lxmert, dpr, layoutlm, rag, tapas
    

    Did you have to do something special to load TinyBERT in your FastFormers experiments? Looking at your source code (link) it seems you use the standard from_pretrained methods of the Transformers library, so I'm curious whether you encountered the same problem. 4. Did you use the data augmentation technique from TinyBERT (i.e. combine BERT with GloVe word embeddings) in your experiments? Looking at your codebase, I could not see this being used, but just want to double-check since it appears to play an important role in the TinyBERT paper. 5. Finally, what values of state_loss_ratio and att_loss_ratio did you use to generate the distilled model in Table 3 of your paper?

    For reference, I am not working directly from the fastformers repo, so have the following dependencies:

    - `transformers` version: 4.0.0-rc-1
    - Platform: Linux-4.15.0-72-generic-x86_64-with-Ubuntu-18.04-bionic
    - Python version: 3.6.9
    - PyTorch version (GPU?): 1.6.0 (True)
    - Tensorflow version (GPU?): 2.3.0 (True)
    - Using GPU in script?: (True)
    - Using distributed or parallel set-up in script?: None
    

    Thank you!

    opened by lewtun 2
  • Task-agnostic or task-specific distillation used for CPU inference results?

    Task-agnostic or task-specific distillation used for CPU inference results?

    ❓ Questions & Help

    Details

    Hello,

    First of all, thank you very much for open-sourcing this research - I expect it will have a large impact on helping bring Transformers to production!

    I have a question about the results in Table 3 of your paper.

    Screen Shot 2020-12-12 at 11 03 24 pm

    Is the distilled model with (4L, 312) obtained from task-agnostic or task-specific distillation? In Section 2 you state

    Since we are experimenting with various NLU tasks, the capacity of the optimal student model that preserves accuracy may vary with varying level of task’s difficulty. Therefore, we experiment with distilling various sized student models; then, we pick the smaller model among the distilled models that can offer higher accuracy than the original BERT model for each task.

    and I could not tell from the codebase which approach you used to generate the numbers on Table 3.

    Thank you!

    opened by lewtun 2
  • Run the teacher model (BERT-base) baseline Error

    Run the teacher model (BERT-base) baseline Error

    🐛 Bug

    Information

    Model I am using (Bert, XLNet ...): BERT

    Language I am using the model on (English, Chinese ...): English

    The problem arises when using:

    • [x] the official example scripts: (give details below)

    The tasks I am working on is:

    • [x] an official GLUE/SQUaD task: (give the name)

    To reproduce

    Steps to reproduce the behavior:

    1. run the command below
    python examples\fastformers\run_superglue.py --model_type bert --model_name_or_path ..\model\fastformers\teacher_model\teacher-bert-base  --task_name BoolQ --output_dir .\out --do_eval  --data_dir ..\dataset\fastformers\BoolQ --per_instance_eval_batch_size 1 --use_fixed_seq_length --do_lower_case --max_seq_length 512 --no_cuda
    

    Expected behavior

    get error below:

    FileNotFoundError: [Errno 2] No such file or directory: '..\dataset\fastformers\BoolQ\tensors_dev_..\model\fastformers\teacher_model\teacher-bert-base_512_boolq_True'

    Environment info

    • transformers version: 2.11.0
    • Platform: windows
    • Python version: 3.6
    • PyTorch version (GPU?): 1.7.0+cpu
    • Tensorflow version (GPU?): None
    • Using GPU in script?: No
    • Using distributed or parallel set-up in script?: No
    opened by baiziyuandyufei 2
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Jarvis is a simple Chatbot with a GUI capable of chatting and retrieving information and daily news from the internet for it's user.

J.A.R.V.I.S Kindly consider starring this repository if you like the program :-) What/Who is J.A.R.V.I.S? J.A.R.V.I.S is an chatbot written that is bu

Epicalable 50 Dec 31, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Kundan Krishna 6 Jun 04, 2021
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Wrapper to display a script output or a text file content on the desktop in sway or other wlroots-based compositors

nwg-wrapper This program is a part of the nwg-shell project. This program is a GTK3-based wrapper to display a script output, or a text file content o

Piotr Miller 94 Dec 27, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023