Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Overview

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper | Twitter

unit test syntax checking PEP8 checking docstring coverage Coverage Status

Avalanche RL is a fork of ContinualAI's Pytorch-based framework Avalanche with the goal of extending its capabilities to Continual Reinforcement Learning (CRL), bootstrapping from the work done on Super/Unsupervised Continual Learning.

It should support all environments sharing the gym.Env interface, handle stream of experiences, provide strategies for RL algorithms and enable fast prototyping through an extremely flexible and customizable API.

The core structure and design principles of Avalanche are to remain untouched to easen the learning curve for all continual learning practitioners, so we still work with the same modules you can find in avl:

  • Benchmarks for managing data and stream of data.
  • Training for model training making use of extensible strategies.
  • Evaluation to evaluate the agent on consistent metrics.
  • Extras for general utils and building blocks.
  • Models contains commonly used model architectures.
  • Logging for logging metrics during training/evaluation.

Head over to Avalanche Website to learn more if these concepts sound unfamiliar to you!

Features


Features added so far in this fork can be summarized and grouped by module.

Benchmarks

RLScenario introduces a Benchmark for RL which augments each experience with an 'Environment' (defined through OpenAI gym.Env interface) effectively implementing a "stream of environments" with which the agent can interact to generate data and learn from that interaction during each experience. This concept models the way experiences in the supervised CL context are translated to CRL, moving away from the concept of Dataset toward a dynamic interaction through which data is generated.

RL Benchmark Generators allow to build these streams of experiences seamlessly, supporting:

  • Any sequence of gym.Env environments through gym_benchmark_generator, which returns a RLScenario from a list of environments ids (e.g. ["CartPole-v1", "MountainCar-v0", ..]) with access to a train and test stream just like in Avalanche. It also supports sampling a random number of environments if you wanna get wild with your experiments.
  • Atari 2600 games through atari_benchmark_generator, taking care of common Wrappers (e.g. frame stacking) for these environments to get you started even more quickly.
  • Habitat, more on this later.

Training

RLBaseStrategy is the super-class of all RL algorithms, augmenting BaseStrategy with RL specific callbacks while still making use of all major features such as plugins, logging and callbacks. Inspired by the amazing stable-baselines-3, it supports both on and off-policy algorithms under a common API defined as a 'rollouts phase' (data gathering) followed by an 'update phase', whose specifics are implemented by subclasses (RL algorithms).

Algorithms are added to the framework by subclassing RLBaseStrategy and implementing specific callbacks. You can check out this implementation of A2C in under 50 lines of actual code including the update step and the action sampling mechanism. Currently only A2C and DQN+DoubleDQN algorithms have been implemented, including various other "utils" such as Replay Buffer.

Training with multiple agent is supported through VectorizedEnv, leveraging Ray for parallel and potentially distributed execution of multiple environment interactions.

Evaluation

New metrics have been added to keep track of rewards, episodes length and any kind of scalar value (such as Epsilon Greedy 'eps') during experiments. Metrics are kept track of using a moving averaged window, useful for smoothing out fluctuations and recording standard deviation and max values reached.

Extras

Several common environment Wrappers are also kept here as we encourage the use of this pattern to suit environments output to your needs. We also provide common gym control environments which have been "parametrized" so you can tweak values such as force and gravity to help out in testing new ideas in a fast and reliable way on well known testbeds. These environments are available by pre-pending a C to the env id as in CCartPole-v1 as they're registered on first import.

Models

In this module you can find an implementation of both MLPs and CNNs for deep-q learning and actor-critic approaches, adapted from popular papers such as "Human-level Control Through Deep Reinforcement Learning" and "Overcoming catastrophic forgetting in neural networks" to learn directly from pixels or states.

Logging

A Tqdm-based interactive logger has been added to ease readability as well as sensible default loggers for RL algorithms.

Quick Example


import torch
from torch.optim import Adam
from avalanche.benchmarks.generators.rl_benchmark_generators import gym_benchmark_generator

from avalanche.models.actor_critic import ActorCriticMLP
from avalanche.training.strategies.reinforcement_learning import A2CStrategy

# Config
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Model
model = ActorCriticMLP(num_inputs=4, num_actions=2, actor_hidden_sizes=1024, critic_hidden_sizes=1024)

# CRL Benchmark Creation
scenario = gym_benchmark_generator(['CartPole-v1'], n_experiences=1, n_parallel_envs=1, 
    eval_envs=['CartPole-v1'])

# Prepare for training & testing
optimizer = Adam(model.parameters(), lr=1e-4)

# Reinforcement Learning strategy
strategy = A2CStrategy(model, optimizer, per_experience_steps=10000, max_steps_per_rollout=5, 
    device=device, eval_every=1000, eval_episodes=10)

# train and test loop
results = []
for experience in scenario.train_stream:
    strategy.train(experience)
    results.append(strategy.eval(scenario.test_stream))

Compare it with vanilla Avalanche snippet!

Check out more examples here (advanced ones coming soon) or in unit tests. We also got a small-scale reproduction of the original EWC paper (Deepmind) experiments.

Installation


As this fork is still under development, the advised way to install it is to simply clone this repo git clone https://github.com/NickLucche/avalanche.git and then just follow avalanche guide to install as developer. Spoiler, just run conda env update --file environment-dev.yml to update your current environment with avalanche-rl dependencies. Currently, the only added dependency is ray.

Disclaimer

This fork is under strict development so expect changes on the main branch on a fairly regular basis. As Avalanche itself it's still in its early Alpha versions, it's only fair to say that Avalanche RL is in super-duper pre-Alpha.

We believe there's lots of room for improvements and tweaking but at the same time there's much that can be offered to the growing community of continual learning practitioners approaching reinforcement learning by allowing to perform experiments under a common framework with a well-defined structure.

Owner
ContinualAI
A non-profit research organization and open community on Continual Learning for AI.
ContinualAI
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023