Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Overview

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021)

by Qiming Hu, Xiaojie Guo.

Dependencies

  • Python3
  • PyTorch>=1.0
  • OpenCV-Python, TensorboardX, Visdom
  • NVIDIA GPU+CUDA

Network Architecture

figure_arch

🚀 1. Single Image Reflection Separation

Data Preparation

Training dataset

  • 7,643 images from the Pascal VOC dataset, center-cropped as 224 x 224 slices to synthesize training pairs.
  • 90 real-world training pairs provided by Zhang et al.

Tesing dataset

  • 45 real-world testing images from CEILNet dataset.
  • 20 real testing pairs provided by Zhang et al.
  • 454 real testing pairs from SIR^2 dataset, containing three subsets (i.e., Objects (200), Postcard (199), Wild (55)).

Usage

Training

  • For stage 1: python train_sirs.py --inet ytmt_ucs --model ytmt_model_sirs --name ytmt_ucs_sirs --hyper --if_align
  • For stage 2: python train_twostage_sirs.py --inet ytmt_ucs --model twostage_ytmt_model --name ytmt_uct_sirs --hyper --if_align --resume --resume_epoch xx --checkpoints_dir xxx

Testing

python test_sirs.py --inet ytmt_ucs --model twostage_ytmt_model --name ytmt_uct_sirs_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_uct_sirs/twostage_unet_68_077_00595364.pt

Trained weights

Google Drive

Visual comparison on real20 and SIR^2

figure_eval

Visual comparison on real45

figure_test

🚀 2. Single Image Denoising

Data Preparation

Training datasets

400 images from the Berkeley segmentation dataset, following DnCNN.

Tesing datasets

BSD68 dataset and Set12.

Usage

Training

python train_denoising.py --inet ytmt_pas --name ytmt_pas_denoising --preprocess True --num_of_layers 9 --mode B --preprocess True

Testing

python test_denoising.py --inet ytmt_pas --name ytmt_pas_denoising_blindtest_25 --test_noiseL 25 --num_of_layers 9 --test_data Set68 --icnn_path ./checkpoints/ytmt_pas_denoising_49_157500.pt

Trained weights

Google Drive

Visual comparison on a sample from BSD68

figure_eval_denoising

🚀 3. Single Image Demoireing

Data Preparation

Training dataset

AIM 2019 Demoireing Challenge

Tesing dataset

100 moireing and clean pairs from AIM 2019 Demoireing Challenge.

Usage

Training

python train_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire --hyper --if_align

Testing

python test_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_ucs_demoire/ytmt_ucs_opt_086_00860000.pt

Trained weights

Google Drive

Visual comparison on the validation set of LCDMoire

figure_eval_demoire

You might also like...
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Official implementation of AAAI-21 paper
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

Comments
  • Datasets

    Datasets

    Hi,

    I have been trying to experiment with the model but I'm having trouble finding the correct datasets for testing. The Sirs2 dataset in the provided link doesn't have the images set up with the naming conventions used in the script. Could you please direct me to the correct data sets for testing and training? Is there a separate repository that you have used?

    Thanks so much,

    David

    opened by davidgaddie 3
  • About Training Details

    About Training Details

    Hello, thank you for sharing your wonderful work. I have some question about the triaining details. It says the training epoch is 120 in your paper but the epoch is set to 60 in YTMT-Strategy/options/net_options/train_options.py. Moreover, the best model in your paper is YTMT-UCT which need two stages training. Can you provide the training settings of the YTMT-UCT (epoch, batchsize...)? Look forward to your reply!

    opened by DUT-CSJ 2
  • CUDA vram allocation issue

    CUDA vram allocation issue

    Hi,

    I've been trying to run the reflection test code, but I get this error: RuntimeError: CUDA out of memory. Tried to allocate 15.66 GiB (GPU 0; 22.20 GiB total capacity; 16.09 GiB already allocated; 2.68 GiB free; 17.55 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    I'm running on an A10G GPU on AWS. I suspect that maybe the dataset is incorrect as each image in the dataset I have is around 800MB. If that's the case can I please be directed to the correct repository for the read20_420 images?

    Thanks so much,

    David

    opened by davidgaddie 1
  • test demoire error

    test demoire error

    Thanks for your great work ,but some error when I run: python test_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire_test --hyper --if_align --resume --icnn_path checkpoints/ytmt_ucs_demoire/ytmt_ucs_demoire_opt_086_00860000.pt

    -------------- End ---------------- [i] initialization method [edsr] Traceback (most recent call last): File "test_demoire.py", line 28, in engine = Engine(opt) File "/nfs_data/code/YTMT-Strategy-main/engine.py", line 19, in init self.__setup() File "/nfs_data/code/YTMT-Strategy-main/engine.py", line 29, in __setup self.model.initialize(opt) File "/nfs_data/code/YTMT-Strategy-main/models/ytmt_model_demoire.py", line 242, in initialize self.load(self, opt.resume_epoch) File "/nfs_data/code/YTMT-Strategy-main/models/ytmt_model_demoire.py", line 413, in load model.net_i.load_state_dict(state_dict['icnn']) File "/opt/conda/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for YTMT_US: Missing key(s) in state_dict: "inc.ytmt_head.fusion_l.weight", "inc.ytmt_head.fusion_l.bias", "inc.ytmt_head.fusion_r.weight", "inc.ytmt_head.fusion_r.bias", "down1.model.ytmt_head.fusion_l.weight", "down1.model.ytmt_head.fusion_l.bias", "down1.model.ytmt_head.fusion_r.weight", "down1.model.ytmt_head.fusion_r.bias", "down2.model.ytmt_head.fusion_l.weight", "down2.model.ytmt_head.fusion_l.bias", "down2.model.ytmt_head.fusion_r.weight", "down2.model.ytmt_head.fusion_r.bias", "down3.model.ytmt_head.fusion_l.weight", "down3.model.ytmt_head.fusion_l.bias", "down3.model.ytmt_head.fusion_r.weight", "down3.model.ytmt_head.fusion_r.bias", "down4.model.ytmt_head.fusion_l.weight", "down4.model.ytmt_head.fusion_l.bias", "down4.model.ytmt_head.fusion_r.weight", "down4.model.ytmt_head.fusion_r.bias", "up1.model.ytmt_head.fusion_l.weight", "up1.model.ytmt_head.fusion_l.bias", "up1.model.ytmt_head.fusion_r.weight", "up1.model.ytmt_head.fusion_r.bias", "up2.model.ytmt_head.fusion_l.weight", "up2.model.ytmt_head.fusion_l.bias", "up2.model.ytmt_head.fusion_r.weight", "up2.model.ytmt_head.fusion_r.bias", "up3.model.ytmt_head.fusion_l.weight", "up3.model.ytmt_head.fusion_l.bias", "up3.model.ytmt_head.fusion_r.weight", "up3.model.ytmt_head.fusion_r.bias", "up4.model.ytmt_head.fusion_l.weight", "up4.model.ytmt_head.fusion_l.bias", "up4.model.ytmt_head.fusion_r.weight", "up4.model.ytmt_head.fusion_r.bias".

    opened by zdyshine 1
Owner
Qiming Hu
Qiming Hu
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Syed Waqas Zamir 906 Dec 30, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Haze Removal can remove slight to extreme cases of haze affecting an image

Haze Removal can remove slight to extreme cases of haze affecting an image. Its most typical use is for landscape photography where the haze causes low contrast and low saturation, but it can also be

Grace Ugochi Nneji 3 Feb 15, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023