A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

Overview

Gender Classification

This is a simple REST api that is served to classify gender on an image given based on faces.

Starting the server

To run this server and make prediction on your own images follow the following steps

  1. create a virtual environment and activate it
  2. run the following command to install packages
pip install -r requirements.txt
  1. navigate to the app.py file and run
python app.py

Model Metrics

The following table shows all the metrics summary we get after training the model for few 6 epochs.

model name model description test accuracy validation accuracy train accuracy test loss validation loss train loss
gender-classification classification of gender using (vgg16 and python flask) 95.04% 91.59% 91.59% 0.1273 0.2593 0.2593

Classification report

This classification report is based on the first batch of the validation dataset i used which consist of 32 images.

precision recall f1-score support

# precision recall f1-score support
accuracy 100% 512
macro avg 100% 100% 100% 512
weighted avg 100% 100% 100% 512

Confusion matrix

The following image represents a confusion matrix for the first batch in the validation set which contains 32 images:

Gender classification

If you hit the server at http://localhost:3001/api/gender you will be able to get the following expected response that is if the request method is POST and you provide the file expected by the server.

Expected Response

The expected response at http://localhost:3001/api/gender with a file image of the right format will yield the following json response to the client.

{
  "predictions": {
    "class": "male",
    "label": 1,
    "meta": {
      "description": "classifying gender based on the face of a human being, (vgg16).",
      "language": "python",
      "library": "tensforflow: v2.*",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class": "female",
        "label": 0,
        "probability": 0.019999999552965164
      },
      {
        "class": "male",
        "label": 1,
        "probability": 0.9800000190734863
      }
    ],
    "probability": 0.9800000190734863
  },
  "success": true
}

Using curl

Make sure that you have the image named female.jpg in the current folder that you are running your cmd otherwise you have to provide an absolute or relative path to the image.

To make a curl POST request at http://localhost:3001/api/gender with the file female.jpg we run the following command.

curl -X POST -F [email protected] http://127.0.0.1:3001/api/gender

Using Postman client

To make this request with postman we do it as follows:

  1. Change the request method to POST
  2. Click on form-data
  3. Select type to be file on the KEY attribute
  4. For the KEY type image and select the image you want to predict under value
  5. Click send

If everything went well you will get the following response depending on the face you have selected:

{
  "predictions": {
    "class": "male",
    "label": 1,
    "meta": {
      "description": "classifying gender based on the face of a human being, (vgg16).",
      "language": "python",
      "library": "tensforflow: v2.*",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class": "female",
        "label": 0,
        "probability": 0.019999999552965164
      },
      {
        "class": "male",
        "label": 1,
        "probability": 0.9800000190734863
      }
    ],
    "probability": 0.9800000190734863
  },
  "success": true
}

Using JavaScript fetch api.

  1. First you need to get the input from html
  2. Create a formData object
  3. make a POST requests
res.json()) .then((data) => console.log(data)); ">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("image", input);
fetch("http://localhost:3001/predict", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "class": "male",
    "label": 1,
    "meta": {
      "description": "classifying gender based on the face of a human being, (vgg16).",
      "language": "python",
      "library": "tensforflow: v2.*",
      "main": "computer vision (cv)",
      "programmer": "@crispengari"
    },
    "predictions": [
      {
        "class": "female",
        "label": 0,
        "probability": 0.019999999552965164
      },
      {
        "class": "male",
        "label": 1,
        "probability": 0.9800000190734863
      }
    ],
    "probability": 0.9800000190734863
  },
  "success": true
}

Notebooks

The ipynb notebook that i used for training the model and saving an .h5 file was can be found:

  1. Model Training And Saving
Owner
crispengari
ai || software development. (creating brains using artificial neural nets to make softwares that has human mind.)
crispengari
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022