[ICSE2020] MemLock: Memory Usage Guided Fuzzing

Overview

MemLock: Memory Usage Guided Fuzzing

MIT License

This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing" accepted for the technical track at ICSE'2020. A pre-print of the paper can be found at ICSE2020_MemLock.pdf.

The repository contains three folders: tool, tests and evaluation.

Tool

MemLock is built on top of the fuzzer AFL. Check out AFL's website for more information details. We provide here a snapshot of MemLock. For simplicity, we provide shell script for the whole installation.

Requirements

  • Operating System: Ubuntu 16.04 LTS (We have tested the artifact on the Ubuntu 16.04)
  • Run the following command to install Docker (Docker version 18.09.7):
    $ sudo apt-get install docker.io
    (If you have any question on docker, you can see Docker's Documentation).
  • Run the following command to install required packages
    $ sudo apt-get install git build-essential python3 cmake tmux libtool automake autoconf autotools-dev m4 autopoint help2man bison flex texinfo zlib1g-dev libexpat1-dev libfreetype6 libfreetype6-dev

Clone the Repository

$ git clone https://github.com/wcventure/MemLock-Fuzz.git MemLock --depth=1
$ cd MemLock

Build and Run the Docker Image

Firstly, system core dumps must be disabled as with AFL.

$ echo core|sudo tee /proc/sys/kernel/core_pattern
$ echo performance|sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Run the following command to automatically build the docker image and configure the environment.

# build docker image
$ sudo docker build -t memlock --no-cache ./

# run docker image
$ sudo docker run --cap-add=SYS_PTRACE -it memlock /bin/bash

Usage

The running command line is similar to AFL.

To perform stack memory usage guided fuzzing, run following command line after use memlock-stack-clang to compile the program, as an example shown in tests/run_test1_MemLock.sh

tool/MemLock/build/bin/memlock-stack-fuzz -i testcase_dir -o findings_dir -d -- /path/to/program @@

To perform heap memory usage guided fuzzing, run following command line after use memlock-heap-clang to compile the program, as an example shown in tests/run_test2_MemLock.sh.

tool/MemLock/build/bin/memlock-heap-fuzz -i testcase_dir -o findings_dir -d -- /path/to/program @@

Tests

Before you use MemLock fuzzer, we suggest that you first use two simple examples provided by us to determine whether the Memlock fuzzer can work normally. We show two simple examples to shows how MemLock can detect excessive memory consumption and why AFL cannot detect these bugs easily. Example 1 demonstrates an uncontrolled-recursion bug and Example 2 demonstrates an uncontrolled-memory-allocation bug.

Run for testing example 1

Example 1 demonstrates an uncontrolled-recursion bug. The function fact() in example1.c is a recursive function. With a sufficiently large recursive depth, the execution would run out of stack memory, causing stack-overflow. You can perform fuzzing on this example program by following commands.

# enter the tests folder
$ cd tests

# run testing example 1 with MemLock
$ ./run_test1_MemLock.sh

# run testing example 1 with AFL (Open another terminal)
$ ./run_test1_AFL.sh

In our experiments for testing example 1, MemLock can find crashes in a few minutes while AFL can not find any crashes.

Run for testing example 2

Example 2 demonstrates an uncontrolled-memory-allocation bug. At line 25 in example2.c, the length of the user inputs is fed directly into new []. By carefully handcrafting the input, an adversary can provide arbitrarily large values, leading to program crash (i.e., std::bad_alloc) or running out of memory. You can perform fuzzing on this example program by following commands.

# enter the tests folder
$ cd tests

# run testing example 2 with MemLock
$ ./run_test2_MemLock.sh

# run testing example 2 with AFL (Open another terminal)
$ ./run_test2_AFL.sh

In our experiments for testing example 2, MemLock can find crashes in a few minutes while AFL can not find any crashes.

Evaluation

The fold evaluation contains all our evaluation subjects. After having MemLock installed, you can run the script to build and instrument the subjects. After instrument the subjects you can run the script to perform fuzzing on the subjects.

Build Target Program

In BUILD folder, You can run the script ./build_xxx.sh. It shows how to build and instrument the subject. For example:

# build cxxfilt
$ cd BUILD
$ ./build_cxxfilt.sh

Run for Fuzzing

After instrumenting the subjects, In FUZZ folder you can run the script ./run_MemLock_cxxfilt.sh to run a MemLock fuzzer instance on program cxxfilt. If you want to compare its performance with AFL, you can open another terminal and run the script ./run_AFL_cxxfilt.sh.

# build cxxfilt
$ cd FUZZ
$ ./run_MemLock_cxxfilt.sh

Publications

@inproceedings{wen2020memlock,
Author = {Wen, Cheng and Wang, Haijun and Li, Yuekang and Qin, Shengchao and Liu, Yang, and Xu, Zhiwu and Chen, Hongxu and Xie, Xiaofei and Pu, Geguang and Liu, Ting},
Title = {MemLock: Memory Usage Guided Fuzzing},
Booktitle= {2020 IEEE/ACM 42nd International Conference on Software Engineering},
Year ={2020},
Address = {Seoul, South Korea},
}

Practical Security Impact

CVE ID Assigned By This Work (26 CVEs)

Our tools have found several security-critical vulnerabilities in widely used open-source projects and libraries, such as Binutils, Elfutils, Libtiff, Mjs.

Vulnerability Package Program Vulnerability Type
CVE-2020-36375 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36374 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36373 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36372 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36371 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36370 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36369 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36368 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36367 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36366 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-18392 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2019-6293 Flex 2.6.4 flex CWE-674: Uncontrolled Recursion
CVE-2019-6292 Yaml-cpp v0.6.2 prase CWE-674: Uncontrolled Recursion
CVE-2019-6291 NASM 2.14.03rc1 nasm CWE-674: Uncontrolled Recursion
CVE-2019-6290 NASM 2.14.03rc1 nasm CWE-674: Uncontrolled Recursion
CVE-2018-18701 Binutils 2.31 nm CWE-674: Uncontrolled Recursion
CVE-2018-18700 Binutils 2.31 nm CWE-674: Uncontrolled Recursion
CVE-2018-18484 Binutils 2.31 c++filt CWE-674: Uncontrolled Recursion
CVE-2018-17985 Binutils 2.31 c++filt CWE-674: Uncontrolled Recursion
CVE-2019-7704 Binaryen 1.38.22 wasm-opt CWE-789: Uncontrolled Memory Allocation
CVE-2019-7698 Bento4 v1.5.1-627 mp4dump CWE-789: Uncontrolled Memory Allocation
CVE-2019-7148 Elfutils 0.175 eu-ar CWE-789: Uncontrolled Memory Allocation
CVE-2018-20652 Tinyexr v0.9.5 tinyexr CWE-789: Uncontrolled Memory Allocation
CVE-2018-18483 Binutils 2.31 c++filt CWE-789: Uncontrolled Memory Allocation
CVE-2018-20657 Binutils 2.31 c++filt CWE-401: Memory Leak
CVE-2018-20002 Binutils 2.31 nm CWE-401: Memory Leak

Video

Links

Owner
Cheng Wen
I am a Ph.D. student at Shenzhen University. My research interest is in the area of Cyber Security(SEC), Programming Language(PL), and Software Engineering(SE).
Cheng Wen
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022