[ICSE2020] MemLock: Memory Usage Guided Fuzzing

Overview

MemLock: Memory Usage Guided Fuzzing

MIT License

This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing" accepted for the technical track at ICSE'2020. A pre-print of the paper can be found at ICSE2020_MemLock.pdf.

The repository contains three folders: tool, tests and evaluation.

Tool

MemLock is built on top of the fuzzer AFL. Check out AFL's website for more information details. We provide here a snapshot of MemLock. For simplicity, we provide shell script for the whole installation.

Requirements

  • Operating System: Ubuntu 16.04 LTS (We have tested the artifact on the Ubuntu 16.04)
  • Run the following command to install Docker (Docker version 18.09.7):
    $ sudo apt-get install docker.io
    (If you have any question on docker, you can see Docker's Documentation).
  • Run the following command to install required packages
    $ sudo apt-get install git build-essential python3 cmake tmux libtool automake autoconf autotools-dev m4 autopoint help2man bison flex texinfo zlib1g-dev libexpat1-dev libfreetype6 libfreetype6-dev

Clone the Repository

$ git clone https://github.com/wcventure/MemLock-Fuzz.git MemLock --depth=1
$ cd MemLock

Build and Run the Docker Image

Firstly, system core dumps must be disabled as with AFL.

$ echo core|sudo tee /proc/sys/kernel/core_pattern
$ echo performance|sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Run the following command to automatically build the docker image and configure the environment.

# build docker image
$ sudo docker build -t memlock --no-cache ./

# run docker image
$ sudo docker run --cap-add=SYS_PTRACE -it memlock /bin/bash

Usage

The running command line is similar to AFL.

To perform stack memory usage guided fuzzing, run following command line after use memlock-stack-clang to compile the program, as an example shown in tests/run_test1_MemLock.sh

tool/MemLock/build/bin/memlock-stack-fuzz -i testcase_dir -o findings_dir -d -- /path/to/program @@

To perform heap memory usage guided fuzzing, run following command line after use memlock-heap-clang to compile the program, as an example shown in tests/run_test2_MemLock.sh.

tool/MemLock/build/bin/memlock-heap-fuzz -i testcase_dir -o findings_dir -d -- /path/to/program @@

Tests

Before you use MemLock fuzzer, we suggest that you first use two simple examples provided by us to determine whether the Memlock fuzzer can work normally. We show two simple examples to shows how MemLock can detect excessive memory consumption and why AFL cannot detect these bugs easily. Example 1 demonstrates an uncontrolled-recursion bug and Example 2 demonstrates an uncontrolled-memory-allocation bug.

Run for testing example 1

Example 1 demonstrates an uncontrolled-recursion bug. The function fact() in example1.c is a recursive function. With a sufficiently large recursive depth, the execution would run out of stack memory, causing stack-overflow. You can perform fuzzing on this example program by following commands.

# enter the tests folder
$ cd tests

# run testing example 1 with MemLock
$ ./run_test1_MemLock.sh

# run testing example 1 with AFL (Open another terminal)
$ ./run_test1_AFL.sh

In our experiments for testing example 1, MemLock can find crashes in a few minutes while AFL can not find any crashes.

Run for testing example 2

Example 2 demonstrates an uncontrolled-memory-allocation bug. At line 25 in example2.c, the length of the user inputs is fed directly into new []. By carefully handcrafting the input, an adversary can provide arbitrarily large values, leading to program crash (i.e., std::bad_alloc) or running out of memory. You can perform fuzzing on this example program by following commands.

# enter the tests folder
$ cd tests

# run testing example 2 with MemLock
$ ./run_test2_MemLock.sh

# run testing example 2 with AFL (Open another terminal)
$ ./run_test2_AFL.sh

In our experiments for testing example 2, MemLock can find crashes in a few minutes while AFL can not find any crashes.

Evaluation

The fold evaluation contains all our evaluation subjects. After having MemLock installed, you can run the script to build and instrument the subjects. After instrument the subjects you can run the script to perform fuzzing on the subjects.

Build Target Program

In BUILD folder, You can run the script ./build_xxx.sh. It shows how to build and instrument the subject. For example:

# build cxxfilt
$ cd BUILD
$ ./build_cxxfilt.sh

Run for Fuzzing

After instrumenting the subjects, In FUZZ folder you can run the script ./run_MemLock_cxxfilt.sh to run a MemLock fuzzer instance on program cxxfilt. If you want to compare its performance with AFL, you can open another terminal and run the script ./run_AFL_cxxfilt.sh.

# build cxxfilt
$ cd FUZZ
$ ./run_MemLock_cxxfilt.sh

Publications

@inproceedings{wen2020memlock,
Author = {Wen, Cheng and Wang, Haijun and Li, Yuekang and Qin, Shengchao and Liu, Yang, and Xu, Zhiwu and Chen, Hongxu and Xie, Xiaofei and Pu, Geguang and Liu, Ting},
Title = {MemLock: Memory Usage Guided Fuzzing},
Booktitle= {2020 IEEE/ACM 42nd International Conference on Software Engineering},
Year ={2020},
Address = {Seoul, South Korea},
}

Practical Security Impact

CVE ID Assigned By This Work (26 CVEs)

Our tools have found several security-critical vulnerabilities in widely used open-source projects and libraries, such as Binutils, Elfutils, Libtiff, Mjs.

Vulnerability Package Program Vulnerability Type
CVE-2020-36375 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36374 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36373 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36372 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36371 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36370 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36369 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36368 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36367 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-36366 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2020-18392 MJS 1.20.1 mjs CWE-674: Uncontrolled Recursion
CVE-2019-6293 Flex 2.6.4 flex CWE-674: Uncontrolled Recursion
CVE-2019-6292 Yaml-cpp v0.6.2 prase CWE-674: Uncontrolled Recursion
CVE-2019-6291 NASM 2.14.03rc1 nasm CWE-674: Uncontrolled Recursion
CVE-2019-6290 NASM 2.14.03rc1 nasm CWE-674: Uncontrolled Recursion
CVE-2018-18701 Binutils 2.31 nm CWE-674: Uncontrolled Recursion
CVE-2018-18700 Binutils 2.31 nm CWE-674: Uncontrolled Recursion
CVE-2018-18484 Binutils 2.31 c++filt CWE-674: Uncontrolled Recursion
CVE-2018-17985 Binutils 2.31 c++filt CWE-674: Uncontrolled Recursion
CVE-2019-7704 Binaryen 1.38.22 wasm-opt CWE-789: Uncontrolled Memory Allocation
CVE-2019-7698 Bento4 v1.5.1-627 mp4dump CWE-789: Uncontrolled Memory Allocation
CVE-2019-7148 Elfutils 0.175 eu-ar CWE-789: Uncontrolled Memory Allocation
CVE-2018-20652 Tinyexr v0.9.5 tinyexr CWE-789: Uncontrolled Memory Allocation
CVE-2018-18483 Binutils 2.31 c++filt CWE-789: Uncontrolled Memory Allocation
CVE-2018-20657 Binutils 2.31 c++filt CWE-401: Memory Leak
CVE-2018-20002 Binutils 2.31 nm CWE-401: Memory Leak

Video

Links

Owner
Cheng Wen
I am a Ph.D. student at Shenzhen University. My research interest is in the area of Cyber Security(SEC), Programming Language(PL), and Software Engineering(SE).
Cheng Wen
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022