Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Overview

Clinically Significant Prostate Cancer Detection in bpMRI

Note: This repo will be continually updated upon future advancements and we welcome open-source contributions! Currently, it shares the TensorFlow 2.5 version of the Hierarchical Probabilistic 3D U-Net (with attention mechanisms, nested decoder structure and deep supervision), titled M1, as explored in the publication(s) listed below. Source code used for training this model, as per our original setup, carry a large number of dependencies on internal datasets, tooling, infrastructure and hardware, and their release is currently not feasible. However, an equivalent minimal adaptation has been made available. We encourage users to test out M1, identify potential areas for significant improvement and propose PRs for inclusion to this repo.

Pre-Trained Model using 1950 bpMRI with PI-RADS v2 Annotations [Training:Validation Ratio - 80:20]:
To infer lesion predictions on testing samples using the pre-trained variant (architecture in commit 58b784f) of this algorithm, please visit https://grand-challenge.org/algorithms/prostate-mri-cad-cspca/

Main Scripts
● Preprocessing Functions: tf2.5/scripts/preprocess.py
● Tensor-Based Augmentations: tf2.5/scripts/model/augmentations.py
● Training Script Template: tf2.5/scripts/train_model.py
● Basic Callbacks (e.g. LR Schedules): tf2.5/scripts/callbacks.py
● Loss Functions: tf2.5/scripts/model/losses.py
● Network Architecture: tf2.5/scripts/model/unets/networks.py

Requirements
● Complete Docker Container: anindox8/m1:latest
● Key Python Packages: tf2.5/requirements.txt

schematic Train-time schematic for the Bayesian/hierarchical probabilistic configuration of M1. L_S denotes the segmentation loss between prediction p and ground-truth Y. Additionally, L_KL, denoting the Kullback–Leibler divergence loss between prior distribution P and posterior distribution Q, is used at train-time (refer to arXiv:1905.13077). For each execution of the model, latent samples z_i ∈ Q (train-time) or z_i ∈ P (test-time) are successively drawn at increasing scales of the model to predict one segmentation mask p.

schematic Architecture schematic of M1, with attention mechanisms and a nested decoder structure with deep supervision.

Minimal Example of Model Setup in TensorFlow 2.5:
(More Details: Training CNNs in TF2: Walkthrough; TF2 Datasets: Best Practices; TensorFlow Probability)

# U-Net Definition (Note: Hyperparameters are Data-Centric -> Require Adequate Tuning for Optimal Performance)
unet_model = unets.networks.M1(\
                        input_spatial_dims =  (20,160,160),            
                        input_channels     =   3,
                        num_classes        =   2,                       
                        filters            =  (32,64,128,256,512),   
                        strides            = ((1,1,1),(1,2,2),(1,2,2),(2,2,2),(2,2,2)),  
                        kernel_sizes       = ((1,3,3),(1,3,3),(3,3,3),(3,3,3),(3,3,3)),
                        prob_latent_dims   =  (3,2,1,0)
                        dropout_rate       =   0.50,       
                        dropout_mode       =  'monte-carlo',
                        se_reduction       =  (8,8,8,8,8),
                        att_sub_samp       = ((1,1,1),(1,1,1),(1,1,1),(1,1,1)),
                        kernel_initializer =   tf.keras.initializers.Orthogonal(gain=1), 
                        bias_initializer   =   tf.keras.initializers.TruncatedNormal(mean=0, stddev=1e-3),
                        kernel_regularizer =   tf.keras.regularizers.l2(1e-4),
                        bias_regularizer   =   tf.keras.regularizers.l2(1e-4),     
                        cascaded           =   False,
                        probabilistic      =   True,
                        deep_supervision   =   True,
                        summary            =   True)  

# Schedule Cosine Annealing Learning Rate with Warm Restarts
LR_SCHEDULE = (tf.keras.optimizers.schedules.CosineDecayRestarts(\
                        initial_learning_rate=1e-3, t_mul=2.00, m_mul=1.00, alpha=1e-3,
                        first_decay_steps=int(np.ceil(((TRAIN_SAMPLES)/BATCH_SIZE)))*10))
                                                  
# Compile Model w/ Optimizer and Loss Function(s)
unet_model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=LR_SCHEDULE, amsgrad=True), 
                   loss      = losses.Focal(alpha=[0.75, 0.25], gamma=2.00).loss)

# Train Model
unet_model.fit(...)

If you use this repo or some part of its codebase, please cite the following articles (see bibtex):

A. Saha, J. Bosma, J. Linmans, M. Hosseinzadeh, H. Huisman (2021), "Anatomical and Diagnostic Bayesian Segmentation in Prostate MRI −Should Different Clinical Objectives Mandate Different Loss Functions?", Medical Imaging Meets NeurIPS Workshop – 35th Conference on Neural Information Processing Systems (NeurIPS), Sydney, Australia. (architecture in commit 914ec9d)

A. Saha, M. Hosseinzadeh, H. Huisman (2021), "End-to-End Prostate Cancer Detection in bpMRI via 3D CNNs: Effect of Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction", Medical Image Analysis:102155. (architecture in commit 58b784f)

A. Saha, M. Hosseinzadeh, H. Huisman (2020), "Encoding Clinical Priori in 3D Convolutional Neural Networks for Prostate Cancer Detection in bpMRI", Medical Imaging Meets NeurIPS Workshop – 34th Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada. (architecture in commit 58b784f)

Contact: [email protected]; [email protected]

Related U-Net Architectures:
● nnU-Net: https://github.com/MIC-DKFZ/nnUNet
● Attention U-Net: https://github.com/ozan-oktay/Attention-Gated-Networks
● UNet++: https://github.com/MrGiovanni/UNetPlusPlus
● Hierarchical Probabilistic U-Net: https://github.com/deepmind/deepmind-research/tree/master/hierarchical_probabilistic_unet

Owner
Diagnostic Image Analysis Group
Diagnostic Image Analysis Group
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022