A Moonraker plug-in for real-time compensation of frame thermal expansion

Overview

Frame Expansion Compensation

A Moonraker plug-in for real-time compensation of frame thermal expansion.

Installation

Credit to protoloft, from whom I plagarized in near entirety the install.sh script -> Z Auto Calibration


Clone this repo into you home directory. For example:

cd /home/pi
git clone https://github.com/alchemyEngine/klipper_frame_expansion_comp

Copy the frame_expansion_compensation.py module to the Klippy extras folder:

cp /home/pi/klipper_frame_expansion_comp/frame_expansion_compensation.py /home/pi/klipper/klippy/extras/

[Optional] Configure Moonraker Updates

Run the install shell script:

bash /home/pi/klipper_frame_expansion_comp/install.sh

Configure the update manager. Add the following section to moonraker.conf:

[update_manager client frame_expansion]
type: git_repo
path: /home/pi/klipper_frame_expansion_comp
primary_branch: main
origin: https://github.com/alchemyEngine/klipper_frame_expansion_comp.git
install_script: install.sh

Configuration

[frame_expansion_compensation]
#temp_coeff:
#   The temperature coefficient of expansion, in mm/K. For example, a
#   temp_coeff of 0.01 mm/K will move the Z axis downwards by 0.01 mm for every
#   Kelvin/degree celcius that the frame temperature increases. Defaults to 0.0,
#   no offset.
temp_sensor:
#   Temperature sensor to use for frame temp measurement. Use full config
#   section name without quoutes. E.g. temperature_sensor frame
#smooth_time:
#   Smoothing window applied to the temp_sensor, in seconds. Can reduce motor
#   noise from excessive small corrections in response to sensor noise. The
#   default is 2.0 seconds.
#max_comp_z:
#   Disables compensation above this Z height [mm]. The last computed correction
#   will remain applied until the toolhead moves below the specified Z position
#   again. The default is 0.0mm (always on).
#max_z_offset:
#   Maximum absolute compensation that can be applied to the Z axis [mm]. The
#   default is 99999999.0mm (unlimited).
z_stepper:
#   The Z stepper motor linked with the Z endstop, as written in printer.cfg.
#   Used for triggering reference temperature measurement. Usually 'stepper_z'
#   unless otherwise defined.

G-Code Commands

The following commands are available when the frame_expansion_compensation config section is enabled:

  • SET_FRAME_COMP ENABLE=[<0:1>]: enable or disable frame expansion compensation. When disabled, the last computed compensation value will remain applied until next homing.
  • QUERY_FRAME_COMP: report current state and key parameters of the frame expansion compensation.

Overview

TODO

Comments
  • QUERY_FRAME_COMP in klipper implementation...

    QUERY_FRAME_COMP in klipper implementation...

    The new klipper documentation doesn't say anything about a query function.... will it still work? If not any reason I shouldn't just stay with the plugin?

    opened by PhilBaz 7
  • stepper_z for multiple Z steppers.

    stepper_z for multiple Z steppers.

    Im on a 24. Voron with 4 Z stepper motors stepper_z - stepper_z3. defined as bellow.

    Is config, z_stepper: stepper_z , still correct?

    The frame compensation appears as if its functioning. Doesn't throw an error, and the query looks as it should. But i dont think it is functioning. I cranked up the temp_coeff: 0.03 producing -0.12mm on a 23min first layer. and it appeared to have no effect. I previously used a manual correction of -0.06mm to correct going into the second layer.

    So I'm at a bit of a loss. I suspect something is not working correctly.

    Im also using 'virtual gantry backers' and have created a corresponding issue there as well. I would appreciate any thoughts or input.

    https://github.com/Deutherius/VGB/issues/3

    printer.cfg

    [frame_expansion_compensation] temp_coeff: 0.03 ##0.0009 temp_sensor: temperature_sensor ToolHP max_z_offset: 0.12 z_stepper: stepper_z

    [stepper_z] ## Z0 Stepper - Front Left ## In Z-MOT Position step_pin: PD14 dir_pin: PD13 enable_pin: !PD15 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    position_max: 330 ##<<<<<<<<<

    endstop_pin: ^PA0

    position_min: -5 homing_speed: 32 second_homing_speed: 3 homing_retract_dist: 3

    [tmc2209 stepper_z] uart_pin: PD10 interpolate: True run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    [stepper_z1] ## Z1 Stepper - Rear Left ## In E1-MOT Position step_pin: PE6 dir_pin: !PC13 enable_pin: !PE5 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    [tmc2209 stepper_z1] uart_pin: PC14 interpolate: True run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    [stepper_z2] ## Z2 Stepper - Rear Right ## In E2-MOT Position step_pin: PE2 dir_pin: PE4 enable_pin: !PE3 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    [tmc2209 stepper_z2] uart_pin: PC15 interpolate: true run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    [stepper_z3] ## Z3 Stepper - Front Right ## In E3-MOT Position step_pin: PD12 dir_pin: !PC4 enable_pin: !PE8 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    [tmc2209 stepper_z3] uart_pin: PA15 interpolate: true run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    opened by PhilBaz 2
  • questions regarding temp_sensor & z_stepper configurations

    questions regarding temp_sensor & z_stepper configurations

    Hi,

    My chamber temp sensor was already defined in [temperature_fan] section as the chamber fan was controlled by this thermsitor, I cannot use it to define in a [temperature_sensor] section otherwise an error would be raised. How can I deal with this issue? Any work around?

    Also, how to configure the z_stepper for voron2.4 since there're 4 z steppers?

    Thanks.

    opened by dukeduck1984 1
  • Updated install.sh to no longer use dummy service

    Updated install.sh to no longer use dummy service

    The dummy service should no longer be needed for use with Moonraker. Updated the install.sh file to continue following the pattern used by Z Auto Calibration. In addition, updated the README since copying the file into Klipper isn't needed since the install.sh file will just create a link.

    opened by randellhodges 0
  • Problem with process_frame_expansion

    Problem with process_frame_expansion

    Hello, I have a problem with the process_frame_expansion.py script. If I run the measure_thermal_behavior.py and the process_meshes.py all sound good but when I run the process_frame_expansion.py script I have this error:

    [email protected]:~/measure_thermal_behavior $ python3 process_frame_expansion.py thermal_quant_mark988#5325_2022-05-29_23-12-26.json Analyzing file: thermal_quant_mark988#5325_2022-05-29_23-12-26 sys:1: RankWarning: Polyfit may be poorly conditioned

    And it doesn't create the temp_coeff_fitting.png

    I am attaching the edited measure_thermal_behavior.py the out.txt and the thermal_quant fil

    Thank you for your help

    Marco

    measure_thermal_behavior.zip e

    opened by panik988 0
  • measure_thermal_behavior : Anything to be gained by adding klicky z_calibration between meshes?

    measure_thermal_behavior : Anything to be gained by adding klicky z_calibration between meshes?

    I have a klicky probe.

    My brain is telling me it would be nice to have the z-calibration routine/data added into the measure_thermal_behavior script.

    But I cant actually figure out what it would be useful for. the z-calibration does drift with temperature and time, over squishing after long periods of heated chamber.

    Is there anything to be gained here?

    https://github.com/protoloft/klipper_z_calibration

    opened by PhilBaz 0
  • Need methodology for different active lengths

    Need methodology for different active lengths

    I'm trying to apply this to an i3 bedslinger style frame, where the gantry is supported by twin stainless steel leadscrews, and inside an enclosure. The deviation from expected Z position is going to be dependent on the thermal growth of the length of leadscrew that is supporting the gantry. When the nozzle is at z=0 there's about 50 mm of active leadscrew, so if the chamber was heated from 20C to 40C the leadscrews would grow thermally 0.0000173 mm/mm/C x 50mm x (40C-20C) = 0.017mm. But when the nozzle gets up to z=100mm there would be 100+50 = 150mm of leadscrew active, so the total growth would be 0.0000173 x 150mm x 20c = 0.052mm. So the compensation needs to know the active length of the support element, which may change from layer to layer as it does in the case of the i3. I don't think what you currently have set up here takes that in to account.

    feature request 
    opened by cmgreyhounds 1
Releases(v0.0.2)
  • v0.0.2(Aug 3, 2022)

    What's Changed

    • Updated install.sh to no longer use dummy service by @randellhodges in https://github.com/alchemyEngine/klipper_frame_expansion_comp/pull/4

    Re-run install.sh after updating and make any necessary changes to your Moonraker config (see README/Configuration).

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Dec 18, 2021)

TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022