A Moonraker plug-in for real-time compensation of frame thermal expansion

Overview

Frame Expansion Compensation

A Moonraker plug-in for real-time compensation of frame thermal expansion.

Installation

Credit to protoloft, from whom I plagarized in near entirety the install.sh script -> Z Auto Calibration


Clone this repo into you home directory. For example:

cd /home/pi
git clone https://github.com/alchemyEngine/klipper_frame_expansion_comp

Copy the frame_expansion_compensation.py module to the Klippy extras folder:

cp /home/pi/klipper_frame_expansion_comp/frame_expansion_compensation.py /home/pi/klipper/klippy/extras/

[Optional] Configure Moonraker Updates

Run the install shell script:

bash /home/pi/klipper_frame_expansion_comp/install.sh

Configure the update manager. Add the following section to moonraker.conf:

[update_manager client frame_expansion]
type: git_repo
path: /home/pi/klipper_frame_expansion_comp
primary_branch: main
origin: https://github.com/alchemyEngine/klipper_frame_expansion_comp.git
install_script: install.sh

Configuration

[frame_expansion_compensation]
#temp_coeff:
#   The temperature coefficient of expansion, in mm/K. For example, a
#   temp_coeff of 0.01 mm/K will move the Z axis downwards by 0.01 mm for every
#   Kelvin/degree celcius that the frame temperature increases. Defaults to 0.0,
#   no offset.
temp_sensor:
#   Temperature sensor to use for frame temp measurement. Use full config
#   section name without quoutes. E.g. temperature_sensor frame
#smooth_time:
#   Smoothing window applied to the temp_sensor, in seconds. Can reduce motor
#   noise from excessive small corrections in response to sensor noise. The
#   default is 2.0 seconds.
#max_comp_z:
#   Disables compensation above this Z height [mm]. The last computed correction
#   will remain applied until the toolhead moves below the specified Z position
#   again. The default is 0.0mm (always on).
#max_z_offset:
#   Maximum absolute compensation that can be applied to the Z axis [mm]. The
#   default is 99999999.0mm (unlimited).
z_stepper:
#   The Z stepper motor linked with the Z endstop, as written in printer.cfg.
#   Used for triggering reference temperature measurement. Usually 'stepper_z'
#   unless otherwise defined.

G-Code Commands

The following commands are available when the frame_expansion_compensation config section is enabled:

  • SET_FRAME_COMP ENABLE=[<0:1>]: enable or disable frame expansion compensation. When disabled, the last computed compensation value will remain applied until next homing.
  • QUERY_FRAME_COMP: report current state and key parameters of the frame expansion compensation.

Overview

TODO

Comments
  • QUERY_FRAME_COMP in klipper implementation...

    QUERY_FRAME_COMP in klipper implementation...

    The new klipper documentation doesn't say anything about a query function.... will it still work? If not any reason I shouldn't just stay with the plugin?

    opened by PhilBaz 7
  • stepper_z for multiple Z steppers.

    stepper_z for multiple Z steppers.

    Im on a 24. Voron with 4 Z stepper motors stepper_z - stepper_z3. defined as bellow.

    Is config, z_stepper: stepper_z , still correct?

    The frame compensation appears as if its functioning. Doesn't throw an error, and the query looks as it should. But i dont think it is functioning. I cranked up the temp_coeff: 0.03 producing -0.12mm on a 23min first layer. and it appeared to have no effect. I previously used a manual correction of -0.06mm to correct going into the second layer.

    So I'm at a bit of a loss. I suspect something is not working correctly.

    Im also using 'virtual gantry backers' and have created a corresponding issue there as well. I would appreciate any thoughts or input.

    https://github.com/Deutherius/VGB/issues/3

    printer.cfg

    [frame_expansion_compensation] temp_coeff: 0.03 ##0.0009 temp_sensor: temperature_sensor ToolHP max_z_offset: 0.12 z_stepper: stepper_z

    [stepper_z] ## Z0 Stepper - Front Left ## In Z-MOT Position step_pin: PD14 dir_pin: PD13 enable_pin: !PD15 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    position_max: 330 ##<<<<<<<<<

    endstop_pin: ^PA0

    position_min: -5 homing_speed: 32 second_homing_speed: 3 homing_retract_dist: 3

    [tmc2209 stepper_z] uart_pin: PD10 interpolate: True run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    [stepper_z1] ## Z1 Stepper - Rear Left ## In E1-MOT Position step_pin: PE6 dir_pin: !PC13 enable_pin: !PE5 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    [tmc2209 stepper_z1] uart_pin: PC14 interpolate: True run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    [stepper_z2] ## Z2 Stepper - Rear Right ## In E2-MOT Position step_pin: PE2 dir_pin: PE4 enable_pin: !PE3 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    [tmc2209 stepper_z2] uart_pin: PC15 interpolate: true run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    [stepper_z3] ## Z3 Stepper - Front Right ## In E3-MOT Position step_pin: PD12 dir_pin: !PC4 enable_pin: !PE8 rotation_distance: 40 gear_ratio: 80:16 microsteps: 16

    [tmc2209 stepper_z3] uart_pin: PA15 interpolate: true run_current: 0.8 hold_current: 0.8 sense_resistor: 0.110 stealthchop_threshold: 0

    opened by PhilBaz 2
  • questions regarding temp_sensor & z_stepper configurations

    questions regarding temp_sensor & z_stepper configurations

    Hi,

    My chamber temp sensor was already defined in [temperature_fan] section as the chamber fan was controlled by this thermsitor, I cannot use it to define in a [temperature_sensor] section otherwise an error would be raised. How can I deal with this issue? Any work around?

    Also, how to configure the z_stepper for voron2.4 since there're 4 z steppers?

    Thanks.

    opened by dukeduck1984 1
  • Updated install.sh to no longer use dummy service

    Updated install.sh to no longer use dummy service

    The dummy service should no longer be needed for use with Moonraker. Updated the install.sh file to continue following the pattern used by Z Auto Calibration. In addition, updated the README since copying the file into Klipper isn't needed since the install.sh file will just create a link.

    opened by randellhodges 0
  • Problem with process_frame_expansion

    Problem with process_frame_expansion

    Hello, I have a problem with the process_frame_expansion.py script. If I run the measure_thermal_behavior.py and the process_meshes.py all sound good but when I run the process_frame_expansion.py script I have this error:

    [email protected]:~/measure_thermal_behavior $ python3 process_frame_expansion.py thermal_quant_mark988#5325_2022-05-29_23-12-26.json Analyzing file: thermal_quant_mark988#5325_2022-05-29_23-12-26 sys:1: RankWarning: Polyfit may be poorly conditioned

    And it doesn't create the temp_coeff_fitting.png

    I am attaching the edited measure_thermal_behavior.py the out.txt and the thermal_quant fil

    Thank you for your help

    Marco

    measure_thermal_behavior.zip e

    opened by panik988 0
  • measure_thermal_behavior : Anything to be gained by adding klicky z_calibration between meshes?

    measure_thermal_behavior : Anything to be gained by adding klicky z_calibration between meshes?

    I have a klicky probe.

    My brain is telling me it would be nice to have the z-calibration routine/data added into the measure_thermal_behavior script.

    But I cant actually figure out what it would be useful for. the z-calibration does drift with temperature and time, over squishing after long periods of heated chamber.

    Is there anything to be gained here?

    https://github.com/protoloft/klipper_z_calibration

    opened by PhilBaz 0
  • Need methodology for different active lengths

    Need methodology for different active lengths

    I'm trying to apply this to an i3 bedslinger style frame, where the gantry is supported by twin stainless steel leadscrews, and inside an enclosure. The deviation from expected Z position is going to be dependent on the thermal growth of the length of leadscrew that is supporting the gantry. When the nozzle is at z=0 there's about 50 mm of active leadscrew, so if the chamber was heated from 20C to 40C the leadscrews would grow thermally 0.0000173 mm/mm/C x 50mm x (40C-20C) = 0.017mm. But when the nozzle gets up to z=100mm there would be 100+50 = 150mm of leadscrew active, so the total growth would be 0.0000173 x 150mm x 20c = 0.052mm. So the compensation needs to know the active length of the support element, which may change from layer to layer as it does in the case of the i3. I don't think what you currently have set up here takes that in to account.

    feature request 
    opened by cmgreyhounds 1
Releases(v0.0.2)
  • v0.0.2(Aug 3, 2022)

    What's Changed

    • Updated install.sh to no longer use dummy service by @randellhodges in https://github.com/alchemyEngine/klipper_frame_expansion_comp/pull/4

    Re-run install.sh after updating and make any necessary changes to your Moonraker config (see README/Configuration).

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Dec 18, 2021)

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022