As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

Overview

HAKE-Action

HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It includes reproduced SOTA models and their HAKE-enhanced versions. HAKE-Action is authored by Yong-Lu Li, Xinpeng Liu, Liang Xu, Cewu Lu. Currently, it is manintained by Yong-Lu Li, Xinpeng Liu and Liang Xu.

News: (2021.10.06) Our extended version of SymNet is accepted by TPAMI! Paper and code are coming soon.

(2021.2.7) Upgraded HAKE-Activity2Vec is released! Images/Videos --> human box + ID + skeleton + part states + action + representation. [Description]

Full demo: [YouTube], [bilibili]

(2021.1.15) Our extended version of TIN (Transferable Interactiveness Network) is accepted by TPAMI! New paper and code will be released soon.

(2020.10.27) The code of IDN (Paper) in NeurIPS'20 is released!

(2020.6.16) Our larger version HAKE-Large (>120K images, activity and part state labels) is released!

We released the HAKE-HICO (image-level part state labels upon HICO) and HAKE-HICO-DET (instance-level part state labels upon HICO-DET). The corresponding data can be found here: HAKE Data.

  • Paper is here.
  • More data and part states (e.g., upon AVA, more kinds of action categories, more rare actions...) are coming.
  • We will keep updating HAKE-Action to include more SOTA models and their HAKE-enhanced versions.

Data Mode

  • HAKE-HICO (PaStaNet* mode in paper): image-level, add the aggression of all part states in an image (belong to one or multiple active persons), compared with original HICO, the only additional labels are image-level human body part states.

  • HAKE-HICO-DET (PaStaNet* in paper): instance-level, add part states for each annotated persons of all images in HICO-DET, the only additional labels are instance-level human body part states.

  • HAKE-Large (PaStaNet in paper): contains more than 120K images, action labels and the corresponding part state labels. The images come from the existing action datasets and crowdsourcing. We mannully annotated all the active persons with our novel part-level semantics.

  • GT-HAKE (GT-PaStaNet* in paper): GT-HAKE-HICO and G-HAKE-HICO-DET. It means that we use the part state labels as the part state prediction. That is, we can perfectly estimate the body part states of a person. Then we use them to infer the instance activities. This mode can be seen as the upper bound of our HAKE-Action. From the results below we can find that, the upper bound is far beyond the SOTA performance. Thus, except for the current study on the conventional instance-level method, continue promoting part-level method based on HAKE would be a very promising direction.

Notion

Activity2Vec and PaSta-R are our part state based modules, which operate action inference based on part semantics, different from previous instance semantics. For example, Pairwise + HAKE-HICO pre-trained Activity2Vec + Linear PaSta-R (the seventh row) achieves 45.9 mAP on HICO. More details can be found in our CVPR2020 paper: PaStaNet: Toward Human Activity Knowledge Engine.

Code

The two versions of HAKE-Action are relesased in two branches of this repo:

Models on HICO

Instance-level +Activity2Vec +PaSta-R mAP [email protected] [email protected] [email protected]
R*CNN - - 28.5 - - -
Girdhar et.al. - - 34.6 - - -
Mallya et.al. - - 36.1 - - -
Pairwise - - 39.9 13.0 19.8 22.3
- HAKE-HICO Linear 44.5 26.9 30.0 30.7
Mallya et.al. HAKE-HICO Linear 45.0 26.5 29.1 30.3
Pairwise HAKE-HICO Linear 45.9 26.2 30.6 31.8
Pairwise HAKE-HICO MLP 45.6 26.0 30.8 31.9
Pairwise HAKE-HICO GCN 45.6 25.2 30.0 31.4
Pairwise HAKE-HICO Seq 45.9 25.3 30.2 31.6
Pairwise HAKE-HICO Tree 45.8 24.9 30.3 31.8
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise GT-HAKE-HICO Linear 65.6 47.5 55.4 56.6

Models on HICO-DET

Using Object Detections from iCAN

Instance-level +Activity2Vec +PaSta-R Full(def) Rare(def) None-Rare(def) Full(ko) Rare(ko) None-Rare(ko)
iCAN - - 14.84 10.45 16.15 16.26 11.33 17.73
TIN - - 17.03 13.42 18.11 19.17 15.51 20.26
iCAN HAKE-HICO-DET Linear 19.61 17.29 20.30 22.10 20.46 22.59
TIN HAKE-HICO-DET Linear 22.12 20.19 22.69 24.06 22.19 24.62
TIN HAKE-Large Linear 22.65 21.17 23.09 24.53 23.00 24.99
TIN GT-HAKE-HICO-DET Linear 34.86 42.83 32.48 35.59 42.94 33.40

Models on AVA (Frame-based)

Method +Activity2Vec +PaSta-R mAP
AVA-TF-Baseline - - 11.4
LFB-Res-50-baseline - - 22.2
LFB-Res-101-baseline - - 23.3
AVA-TF-Baeline HAKE-Large Linear 15.6
LFB-Res-50-baseline HAKE-Large Linear 23.4
LFB-Res-101-baseline HAKE-Large Linear 24.3

Models on V-COCO

Method +Activity2Vec +PaSta-R AP(role), Scenario 1 AP(role), Scenario 2
iCAN - - 45.3 52.4
TIN - - 47.8 54.2
iCAN HAKE-Large Linear 49.2 55.6
TIN HAKE-Large Linear 51.0 57.5

Training Details

We first pre-train the Activity2Vec and PaSta-R with activities and PaSta labels. Then we change the last FC in PaSta-R to fit the activity categories of the target dataset. Finally, we freeze Activity2Vec and fine-tune PaSta-R on the train set of the target dataset. Here, HAKE works like the ImageNet and Activity2Vec is used as a pre-trained knowledge engine to promote other tasks.

Citation

If you find our work useful, please consider citing:

@inproceedings{li2020pastanet,
  title={PaStaNet: Toward Human Activity Knowledge Engine},
  author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{li2019transferable,
  title={Transferable Interactiveness Knowledge for Human-Object Interaction Detection},
  author={Li, Yong-Lu and Zhou, Siyuan and Huang, Xijie and Xu, Liang and Ma, Ze and Fang, Hao-Shu and Wang, Yanfeng and Lu, Cewu},
  booktitle={CVPR},
  year={2019}
}
@inproceedings{lu2018beyond,
  title={Beyond holistic object recognition: Enriching image understanding with part states},
  author={Lu, Cewu and Su, Hao and Li, Yonglu and Lu, Yongyi and Yi, Li and Tang, Chi-Keung and Guibas, Leonidas J},
  booktitle={CVPR},
  year={2018}
}

HAKE

HAKE[website] is a new large-scale knowledge base and engine for human activity understanding. HAKE provides elaborate and abundant body part state labels for active human instances in a large scale of images and videos. With HAKE, we boost the action understanding performance on widely-used human activity benchmarks. Now we are still enlarging and enriching it, and looking forward to working with outstanding researchers around the world on its applications and further improvements. If you have any pieces of advice or interests, please feel free to contact Yong-Lu Li ([email protected]).

If you get any problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!

HAKE-Action is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail. We will send the detail agreement to you.

Owner
Yong-Lu Li
Ph.D. CV_Robotics
Yong-Lu Li
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022