HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

Overview

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

Maintained - Yes Quick Attention Multi Loss Function Encoder-Decoder Network Semantic Segmentation Computational Pathology

Histological Image Segmentation
This repo contains the code to Test and Train the HistoSeg

HistoSeg is an Encoder-Decoder DCNN which utilizes the novel Quick Attention Modules and Multi Loss function to generate segmentation masks from histopathological images with greater accuracy.

Datasets used for trainig HistoSeg

MoNuSeg - Multi-organ nuclei segmentation from H&E stained histopathological images

link: https://monuseg.grand-challenge.org/

GlaS - Gland segmentation in histology images

link: https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/

Trained Weights are available in the repo to test the HistoSeg

For MoNuSeg Dataset link: https://github.com/saadwazir/HistoSeg/blob/main/HistoSeg_MoNuSeg_.h5

For GlaS Dataset link: https://github.com/saadwazir/HistoSeg/blob/main/HistoSeg_GlaS_.h5

Data Preprocessing for Training

After downloading the dataset you must generate patches of images and their corresponding masks (Ground Truth), & convert it into numpy arrays or you can use dataloaders directly inside the code. you can generate patches using Image_Patchyfy. Link : https://github.com/saadwazir/Image_Patchyfy

For example to train HistoSeg on MoNuSeg Dataset, the distribution of dataset after creating pathes

X_train 1470x256x256x3 
y_train 1470x256x256x1
X_val 686x256x256x3
y_Val 686x256x256x1

Data Preprocessing for Testing

You just need to resize the images and their corresponding masks (Ground Truth) into same size i.e all the samples must have same resolution, and then convert it into numpy arrays.

For example to test HistoSeg on MoNuSeg Dataset, the shapes of dataset after creating numpy arrays are

X_test 14x1000x1000x3 
y_test 14x1000x1000x1

Requirements

pip install matplotlib
pip install seaborn
pip install tqdm
pip install scikit-learn
conda install tensorflow==2.7
pip install keras==2.2.4

Training

To train HistoSeg use the following command

python HistoSeg_Train.py --train_images 'path' --train_masks 'path' --val_images 'path' --val_masks 'path' --width 256 --height 256 --epochs 100 --batch 16

Testing

To test HistoSeg use the following command

python HistoSeg_Test.py --images 'path' --masks 'path' --weights 'path' --width 1000 --height 1000

For example to test HistoSeg on MoNuSeg Dataset with trained weights, use the following command
python HistoSeg_Test.py --images 'X_test_MoNuSeg_14x1000x1000.npy' --masks 'y_test_MoNuSeg_14x1000x1000.npy' --weights 'HistoSeg_MoNuSeg_.h5' --width 1000 --height 1000
Owner
Saad Wazir
Saad Wazir is currently working as a Researcher at Embedded Systems & Pervasive Computing (EPIC) Lab in National University of Computer and Emerging Sciences (F
Saad Wazir
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022