Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Related tags

Deep LearningDSRL
Overview

Dual super-resolution learning for semantic segmentation

2021-01-02 Subpixel Update

Happy new year! The 2020-12-29 update of SISR with subpixel conv performs bad in my experiment so I did some changes to it.

The former subpixel version is depreciated now. Click here to learn more. If you are using the main branch then you can just ignore this message.

2020-12-29 New branch: subpixel

  • In this new branch, SISR path changes to follow the design of Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, CVPR 2016. The main branch still uses Deconv so if you prefer the older version you can simply ignore this update.
  • I haven't run a full test on this new framework yet so I'm still not sure about it's performance on validation set. Please let me know if you find this new framework performs better. Thank you. :)

2020-12-15 Pretrained Weights Uploaded (Only for the main branch)

  • See Google Drive (Please note that you don't have to unzip this file.)
  • Use the pretrained weights by train.py --resume 'path/to/weights'

2020-10-31 Good News! I achieved an mIoU of 0.6787 in the newest experiment(the experiment is still running and the final mIoU may be even higher)!

  • So the FA module should be places after each path's final output.
  • The FTM should be 19 channel -> 3 channel
  • Hyper-Parameter fine-tuning

It's amazing that the final model converges at a extremely fast speed. Now the codes are all set, just clone this repo and run train.py!

And thanks for the reminder of @XinruiYuan, currently this repo also differs from the original paper in the architecture of SISR path. I will be working on it after finishing my homework.

2020-10-22 First commit

I implemented the framework proposed in this paper since the authors' code is still under legal scan and i just can't wait to see the results. This repo is based on Deeplab v3+ and Cityscapes, and i still have problems about the FA module.

  • so the code is runnable? yes. just run train.py directly and you can see DSRL starts training.(of course change the dataset path. See insturctions in the Deeplab v3+ part below.)

  • any difference from the paper's proposed method? Actually yes. It's mainly about the FA module. I tried several mothods such as:

    • 19 channel SSSR output -> feature transform module -> 3 channel output -> calculate FAloss with 3 channel SISR output. Result is like a disaster
    • 19 channel SSSR last_conv(see the code and you'll know what it is) feature -> feature transform module -> calculate FAloss with 19 channel SISR last_conv feature. still disaster.
    • 19 channel SSSR last_conv(see the code and you'll know what it is) feature -> feature transform module -> calculate FAloss with 19 channel SISR last_conv feature, but no more normalization in the FA module. Seems not bad, but still cannot surpass simple original Deeplab v3+
    • Besides, this project use a square input(default 512*512) which is cropped from the original image.
  • so my results? mIoU about 0.6669 when use the original Deeplab v3+. 0.6638 when i add the SISR path but no FA module. and about 0.62 after i added the FA module.

The result doesn't look good, but this may because of the differences of the FA module.(but why the mIoU decreased after i added the SISR path)

Currently the code doesn't use normalization in FA module. If you want to try using them, please cancel the comment of line 16,18,23,25 in 'utils/fa_loss.py'

Please imform me if you have any questions about the code.

below are discriptions about Deeplab v3+(from the original repo).


pytorch-deeplab-xception

Update on 2018/12/06. Provide model trained on VOC and SBD datasets.

Update on 2018/11/24. Release newest version code, which fix some previous issues and also add support for new backbones and multi-gpu training. For previous code, please see in previous branch

TODO

  • Support different backbones
  • Support VOC, SBD, Cityscapes and COCO datasets
  • Multi-GPU training
Backbone train/eval os mIoU in val Pretrained Model
ResNet 16/16 78.43% google drive
MobileNet 16/16 70.81% google drive
DRN 16/16 78.87% google drive

Introduction

This is a PyTorch(0.4.1) implementation of DeepLab-V3-Plus. It can use Modified Aligned Xception and ResNet as backbone. Currently, we train DeepLab V3 Plus using Pascal VOC 2012, SBD and Cityscapes datasets.

Results

Installation

The code was tested with Anaconda and Python 3.6. After installing the Anaconda environment:

  1. Clone the repo:

    git clone https://github.com/jfzhang95/pytorch-deeplab-xception.git
    cd pytorch-deeplab-xception
  2. Install dependencies:

    For PyTorch dependency, see pytorch.org for more details.

    For custom dependencies:

    pip install matplotlib pillow tensorboardX tqdm

Training

Follow steps below to train your model:

  1. Configure your dataset path in mypath.py.

  2. Input arguments: (see full input arguments via python train.py --help):

    usage: train.py [-h] [--backbone {resnet,xception,drn,mobilenet}]
                [--out-stride OUT_STRIDE] [--dataset {pascal,coco,cityscapes}]
                [--use-sbd] [--workers N] [--base-size BASE_SIZE]
                [--crop-size CROP_SIZE] [--sync-bn SYNC_BN]
                [--freeze-bn FREEZE_BN] [--loss-type {ce,focal}] [--epochs N]
                [--start_epoch N] [--batch-size N] [--test-batch-size N]
                [--use-balanced-weights] [--lr LR]
                [--lr-scheduler {poly,step,cos}] [--momentum M]
                [--weight-decay M] [--nesterov] [--no-cuda]
                [--gpu-ids GPU_IDS] [--seed S] [--resume RESUME]
                [--checkname CHECKNAME] [--ft] [--eval-interval EVAL_INTERVAL]
                [--no-val]
    
  3. To train deeplabv3+ using Pascal VOC dataset and ResNet as backbone:

    bash train_voc.sh
  4. To train deeplabv3+ using COCO dataset and ResNet as backbone:

    bash train_coco.sh

Acknowledgement

PyTorch-Encoding

Synchronized-BatchNorm-PyTorch

drn

Owner
Sam
Get yourself a cup of tea. ˊ_>ˋ旦
Sam
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
On Effective Scheduling of Model-based Reinforcement Learning

On Effective Scheduling of Model-based Reinforcement Learning Code to reproduce the experiments in On Effective Scheduling of Model-based Reinforcemen

laihang 8 Oct 07, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022