This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

Overview

AlphaRotate: A Rotation Detection Benchmark using TensorFlow

Documentation Status PyPI Downloads License

Abstract

AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervised by Prof. Junchi Yan.

Papers and codes related to remote sensing/aerial image detection: DOTA-DOAI .

Techniques:

The above-mentioned rotation detectors are all modified based on the following horizontal detectors:

3

Projects

0

Latest Performance

DOTA (Task1)

Baseline

Backbone Neck Training/test dataset Data Augmentation Epoch NMS
ResNet50_v1d 600->800 FPN trainval/test × 13 (AP50) or 17 (AP50:95) is enough for baseline (default is 13) gpu nms (slightly worse <1% than cpu nms but faster)
Method Baseline DOTA1.0 DOTA1.5 DOTA2.0 Model Anchor Angle Pred. Reg. Loss Angle Range Configs
- RetinaNet-R 67.25 56.50 42.04 Baidu Drive (bi8b) R Reg. (∆⍬) smooth L1 [-90,0) dota1.0, dota1.5, dota2.0
- RetinaNet-H 64.17 56.10 43.06 Baidu Drive (bi8b) H Reg. (∆⍬) smooth L1 [-90,90) dota1.0, dota1.5, dota2.0
- RetinaNet-H 65.33 57.21 44.58 Baidu Drive (bi8b) H Reg. (sin⍬, cos⍬) smooth L1 [-90,90) dota1.0, dota1.5, dota2.0
- RetinaNet-H 65.73 58.87 44.16 Baidu Drive (bi8b) H Reg. (∆⍬) smooth L1 [-90,0) dota1.0, dota1.5, dota2.0
IoU-Smooth L1 RetinaNet-H 66.99 59.17 46.31 Baidu Drive (qcvc) H Reg. (∆⍬) iou-smooth L1 [-90,0) dota1.0, dota1.5, dota2.0
RIDet RetinaNet-H 66.06 58.91 45.35 Baidu Drive (njjv) H Quad. hungarian loss - dota1.0, dota1.5, dota2.0
RSDet RetinaNet-H 67.27 61.42 46.71 Baidu Drive (2a1f) H Quad. modulated loss - dota1.0, dota1.5, dota2.0
CSL RetinaNet-H 67.38 58.55 43.34 Baidu Drive (sdbb) H Cls.: Gaussian (r=1, w=10) smooth L1 [-90,90) dota1.0, dota1.5, dota2.0
DCL RetinaNet-H 67.39 59.38 45.46 Baidu Drive (m7pq) H Cls.: BCL (w=180/256) smooth L1 [-90,90) dota1.0, dota1.5, dota2.0
- FCOS 67.69 61.05 48.10 Baidu Drive (pic4) - Quad smooth L1 - dota1.0, dota1.5, dota2.0
RSDet++ FCOS 67.91 62.18 48.81 Baidu Drive (8ww5) - Quad modulated loss - dota1.0, dota1.5 dota2.0
GWD RetinaNet-H 68.93 60.03 46.65 Baidu Drive (7g5a) H Reg. (∆⍬) gwd [-90,0) dota1.0, dota1.5, dota2.0
GWD + SWA RetinaNet-H 69.92 60.60 47.63 Baidu Drive (qcn0) H Reg. (∆⍬) gwd [-90,0) dota1.0, dota1.5, dota2.0
BCD RetinaNet-H 71.23 60.78 47.48 Baidu Drive (0puk) H Reg. (∆⍬) bcd [-90,0) dota1.0, dota1.5, dota2.0
KLD RetinaNet-H 71.28 62.50 47.69 Baidu Drive (o6rv) H Reg. (∆⍬) kld [-90,0) dota1.0, dota1.5, dota2.0
KFIoU RetinaNet-H 70.64 62.71 48.04 Baidu Drive (o72o) H Reg. (∆⍬) kf [-90,0) dota1.0, dota1.5, dota2.0
R3Det RetinaNet-H 70.66 62.91 48.43 Baidu Drive (n9mv) H->R Reg. (∆⍬) smooth L1 [-90,0) dota1.0, dota1.5, dota2.0
DCL R3Det 71.21 61.98 48.71 Baidu Drive (eg2s) H->R Cls.: BCL (w=180/256) iou-smooth L1 [-90,0)->[-90,90) dota1.0, dota1.5, dota2.0
GWD R3Det 71.56 63.22 49.25 Baidu Drive (jb6e) H->R Reg. (∆⍬) smooth L1->gwd [-90,0) dota1.0, dota1.5, dota2.0
BCD R3Det 72.22 63.53 49.71 Baidu Drive (v60g) H->R Reg. (∆⍬) bcd [-90,0) dota1.0, dota1.5, dota2.0
KLD R3Det 71.73 65.18 50.90 Baidu Drive (tq7f) H->R Reg. (∆⍬) kld [-90,0) dota1.0, dota1.5, dota2.0
KFIoU R3Det 72.28 64.69 50.41 Baidu Drive (u77v) H->R Reg. (∆⍬) kf [-90,0) dota1.0, dota1.5, dota2.0
- R2CNN (Faster-RCNN) 72.27 66.45 52.35 Baidu Drive (02s5) H->R Reg. (∆⍬) smooth L1 [-90,0) dota1.0, dota1.5 dota2.0

SOTA

Method Backbone DOTA1.0 Model MS Data Augmentation Epoch Configs
R2CNN-BCD ResNet152_v1d-FPN 79.54 Baidu Drive (h2u1) 34 dota1.0
RetinaNet-BCD ResNet152_v1d-FPN 78.52 Baidu Drive (0puk) 51 dota1.0
R3Det-BCD ResNet50_v1d-FPN 79.08 Baidu Drive (v60g) 51 dota1.0
R3Det-BCD ResNet152_v1d-FPN 79.95 Baidu Drive (v60g) 51 dota1.0

Note:

  • Single GPU training: SAVE_WEIGHTS_INTE = iter_epoch * 1 (DOTA1.0: iter_epoch=27000, DOTA1.5: iter_epoch=32000, DOTA2.0: iter_epoch=40000)
  • Multi-GPU training (better): SAVE_WEIGHTS_INTE = iter_epoch * 2

Installation

Manual configuration

pip install -r requirements.txt
pip install -v -e .  # or "python setup.py develop"

Or, you can simply install AlphaRotate with the following command:

pip install alpharotate

Docker

docker images: yangxue2docker/yx-tf-det:tensorflow1.13.1-cuda10-gpu-py3

Note: For 30xx series graphics cards, I recommend this blog to install tf1.xx, or download image from tensorflow-release-notes according to your development environment, e.g. nvcr.io/nvidia/tensorflow:20.11-tf1-py3

Download Model

Pretrain weights

Download a pretrain weight you need from the following three options, and then put it to $PATH_ROOT/dataloader/pretrained_weights.

  1. MxNet pretrain weights (recommend in this repo, default in NET_NAME): resnet_v1d, resnet_v1b, refer to gluon2TF.
  1. Tensorflow pretrain weights: resnet50_v1, resnet101_v1, resnet152_v1, efficientnet, mobilenet_v2, darknet53 (Baidu Drive (1jg2), Google Drive).
  2. Pytorch pretrain weights, refer to pretrain_zoo.py and Others.

Trained weights

  1. Please download trained models by this project, then put them to $PATH_ROOT/output/pretained_weights.

Train

  1. If you want to train your own dataset, please note:

    (1) Select the detector and dataset you want to use, and mark them as #DETECTOR and #DATASET (such as #DETECTOR=retinanet and #DATASET=DOTA)
    (2) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/#DATASET/#DETECTOR/cfgs_xxx.py
    (3) Copy $PATH_ROOT/libs/configs/#DATASET/#DETECTOR/cfgs_xxx.py to $PATH_ROOT/libs/configs/cfgs.py
    (4) Add category information in $PATH_ROOT/libs/label_name_dict/label_dict.py     
    (5) Add data_name to $PATH_ROOT/dataloader/dataset/read_tfrecord.py  
    
  2. Make tfrecord
    If image is very large (such as DOTA dataset), the image needs to be cropped. Take DOTA dataset as a example:

    cd $PATH_ROOT/dataloader/dataset/DOTA
    python data_crop.py
    

    If image does not need to be cropped, just convert the annotation file into xml format, refer to example.xml.

    cd $PATH_ROOT/dataloader/dataset/  
    python convert_data_to_tfrecord.py --root_dir='/PATH/TO/DOTA/' 
                                       --xml_dir='labeltxt'
                                       --image_dir='images'
                                       --save_name='train' 
                                       --img_format='.png' 
                                       --dataset='DOTA'
    
  3. Start training

    cd $PATH_ROOT/tools/#DETECTOR
    python train.py
    

Test

  1. For large-scale image, take DOTA dataset as a example (the output file or visualization is in $PATH_ROOT/tools/#DETECTOR/test_dota/VERSION):

    cd $PATH_ROOT/tools/#DETECTOR
    python test_dota.py --test_dir='/PATH/TO/IMAGES/'  
                        --gpus=0,1,2,3,4,5,6,7  
                        -ms (multi-scale testing, optional)
                        -s (visualization, optional)
                        -cn (use cpu nms, slightly better <1% than gpu nms but slower, optional)
    
    or (recommend in this repo, better than multi-scale testing)
    
    python test_dota_sota.py --test_dir='/PATH/TO/IMAGES/'  
                             --gpus=0,1,2,3,4,5,6,7  
                             -s (visualization, optional)
                             -cn (use cpu nms, slightly better <1% than gpu nms but slower, optional)
    

    Notice: In order to set the breakpoint conveniently, the read and write mode of the file is' a+'. If the model of the same #VERSION needs to be tested again, the original test results need to be deleted.

  2. For small-scale image, take HRSC2016 dataset as a example:

    cd $PATH_ROOT/tools/#DETECTOR
    python test_hrsc2016.py --test_dir='/PATH/TO/IMAGES/'  
                            --gpu=0
                            --image_ext='bmp'
                            --test_annotation_path='/PATH/TO/ANNOTATIONS'
                            -s (visualization, optional)
    

Tensorboard

cd $PATH_ROOT/output/summary
tensorboard --logdir=.

1

2

Citation

If you find our code useful for your research, please consider cite.

@article{yang2021alpharotate,
    author  = {Yang, Xue and Zhou, Yue and Yan, Junchi},
    title   = {AlphaRotate: A Rotation Detection Benchmark using TensorFlow},
    year    = {2021},
    url     = {https://github.com/yangxue0827/RotationDetection}
}

Reference

1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet

Comments
  • "ValueError: too many values to unpack" RotationDetection/alpharotate/libs/models/detectors/scrdet/build_whole_network.py 147Line

    Problem path: RotationDetection/alpharotate/libs/models/detectors/scrdet/build_whole_network.py

    147 Line. feature, pa_mask = self.build_backbone(input_img_batch)

    Since only one variable is returned, why store it in two variables?

    It is error that "ValueError: too many values to unpack"

    what is pa_mask parameter's mean and rule?

    opened by sangheonEN 38
  • Gradient about IOU-Smooth L1 loss in SCRDet

    Gradient about IOU-Smooth L1 loss in SCRDet

    here's the relative link

    In the link I say the backward gradient will be 0 eternally.

    In other point, make the |u| underivable that gradient will not be 0. But the gradient of u/|u| is not 1 anymore.

    @yangxue0827 Could you please help me out? Many thanks!

    opened by igo312 10
  • How may I use this repo for building orientation detection ?

    How may I use this repo for building orientation detection ?

    Sorry if my question is irrelevant, but this is what I am instructed to do as an assignment. I am instructed to use this repo for detecting the orientation of various building in an image. Please guide me for the same.

    opened by neutr0nStar 8
  • Request for model files tested on DOTA-v1.5

    Request for model files tested on DOTA-v1.5

    opened by chandlerbing65nm 7
  • Alternative cloud for trained models

    Alternative cloud for trained models

    Hello @yangxue0827,

    I cannot create a Baidu account. Could you upload the trained models in another cloud such as Dropbox, Onedrive o Google Drive? If it is not possible ... could you send me all these trained models via email? Thank you so much.

    Best regards, Roberto Valle

    opened by bobetocalo 7
  • Download Trained Model

    Download Trained Model

    Hello

    I would like to know, where I can download the trained model (not pretrained):

    "Please download trained models by this project, then put them to trained_weights."

    When I go to Baidu and enter the code from here: https://github.com/yangxue0827/RotationDetection/issues/29#issuecomment-896431674 I still cannot download as some pop up comes up that I cannot read. Is there maybe any other place (Google Drive) where I can find it?

    Best regards and thank you

    opened by Testbild 6
  • Where is trained models?

    Where is trained models?

    Thank you for your contribution to the detection community. And I notice that “Latest: More results and trained models are available in the MODEL_ZOO.md.” in README.md,but I can’t find the “MODEL_ZOO.md”. If you could provide the trained model,words cannot express how thankful I am.

    opened by 1995gatch 6
  • ValueError: Tried to convert 'input' to a tensor and failed. Error: None values not supported.

    ValueError: Tried to convert 'input' to a tensor and failed. Error: None values not supported.

    在跑scrnet时出现问题,打印g之后发现 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Tensor("tower_0/clip_by_norm_88:0", shape=(3, 3, 256, 256), dtype=float32, device=/device:GPU:0) $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Tensor("tower_1/clip_by_norm_88:0", shape=(3, 3, 256, 256), dtype=float32, device=/device:GPU:1) $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Tensor("tower_0/clip_by_norm_89:0", shape=(1, 1, 256, 1024), dtype=float32, device=/device:GPU:0) $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Tensor("tower_1/clip_by_norm_89:0", shape=(1, 1, 256, 1024), dtype=float32, device=/device:GPU:1) $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ None

    opened by xxx0320 6
  • 关于R3det_kl的训练问题

    关于R3det_kl的训练问题

    大佬你好! 想请教一下,在r3det_kl的训练过程中,使用resnet_50的pretrained weights,reg_loss一直震荡,想问问是哪一步出现了问题呢?

    cfgs设置和loss图像如下。

    SAVE_WEIGHTS_INTE = 27000 * 1 CLS_WEIGHT = 1.0 REG_WEIGHT = 2.0 REG_LOSS_MODE = 3 # KLD loss

    sendpix0

    opened by yanglcs 5
  • How to test train and test  retinanet-gwd in HRSC2016 dataset?

    How to test train and test retinanet-gwd in HRSC2016 dataset?

    1.i have downloaded trained models by this project, then put them to $PATH_ROOT/output/pretained_weights. the pretained_weights is resnet_v1d. 2. i have compiled .

    cd $PATH_ROOT/libs/utils/cython_utils
    rm *.so
    rm *.c
    rm *.cpp
    python setup.py build_ext --inplace (or make)
    
    cd $PATH_ROOT/libs/utils/
    rm *.so
    rm *.c
    rm *.cpp
    python setup.py build_ext --inplace
    
    1. i have Copied $PATH_ROOT/libs/configs/HRSC2016/gwd/cfgs_res50_hrsc2016_gwd_v6.py to$PATH_ROOT/libs/configs/cfgs.py
    2. the structure directory of HRSC2016 Dataset image

    5.when i python tools/gwd/train.py ,i got some errors.

    2021-09-05 07:49:28.459600: W tensorflow/core/framework/op_kernel.cc:1651] OP_REQUIRES failed at matching_files_op.cc:49 : Not found: ../../dataloader/tfrecord; No such file or directory 2021-09-05 07:49:28.534617: W tensorflow/core/framework/op_kernel.cc:1651] OP_REQUIRES failed at matching_files_op.cc:49 : Not found: ../../dataloader/tfrecord; No such file or directory Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1365, in _do_call return fn(*args) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1350, in _run_fn target_list, run_metadata) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1443, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.NotFoundError: ../../dataloader/tfrecord; No such file or directory [[{{node get_batch/matching_filenames/MatchingFiles}}]]

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "train.py", line 160, in trainer.main() File "train.py", line 155, in main self.log_printer(gwd, optimizer, global_step, tower_grads, total_loss_dict, num_gpu, graph) File "../../tools/train_base.py", line 196, in log_printer sess.run(init_op) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 956, in run run_metadata_ptr) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1180, in _run feed_dict_tensor, options, run_metadata) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1359, in _do_run run_metadata) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py", line 1384, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.NotFoundError: ../../dataloader/tfrecord; No such file or directory [[node get_batch/matching_filenames/MatchingFiles (defined at /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py:1748) ]]

    Original stack trace for 'get_batch/matching_filenames/MatchingFiles': File "train.py", line 160, in trainer.main() File "train.py", line 53, in main is_training=True) File "../../dataloader/dataset/read_tfrecord.py", line 115, in next_batch filename_tensorlist = tf.train.match_filenames_once(pattern) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/input.py", line 76, in match_filenames_once name=name, initial_value=io_ops.matching_files(pattern), File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/ops/gen_io_ops.py", line 464, in matching_files "MatchingFiles", pattern=pattern, name=name) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/op_def_library.py", line 794, in _apply_op_helper op_def=op_def) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/util/deprecation.py", line 513, in new_func return func(*args, **kwargs) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py", line 3357, in create_op attrs, op_def, compute_device) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py", line 3426, in _create_op_internal op_def=op_def) File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/ops.py", line 1748, in init self._traceback = tf_stack.extract_stack()

    Can you help me solve this problem? i hope your reply

    opened by myGithubSiki 5
  • 为何nms没有起作用?

    为何nms没有起作用?

    大佬您好,我想请教下为何nms好像没有起作用。系统是Ubuntu18.04,nms部分已经编译了。算法用的是gwd,训练和测试均能正常进行,就是有的好像经过了nms处理,有的又没有,而且训练和测试的时候我都把nms开启了

    post-processing

    NMS = True NMS_IOU_THRESHOLD = 0.45 MAXIMUM_DETECTIONS = 200 FILTERED_SCORE = 0.5 VIS_SCORE = 0.4

    test and eval

    TEST_SAVE_PATH = os.path.join(ROOT_PATH, 'tools/test_result') EVALUATE_R_DIR = os.path.join(ROOT_PATH, 'output/evaluate_result_pickle/') USE_07_METRIC = True EVAL_THRESHOLD = 0.45

    训练: train

    测试: DJI_0005_000090

    opened by Chrispaoge 4
  • not found the implementation of indirect angle regression

    not found the implementation of indirect angle regression

    Great work, thanks for sharing the project. I did not find the implementation of the indirect angle regression which is explained in your TPAMI paper. Have I missed or this part is not included in this public project? Thanks.

    opened by menchael 0
  • Baidu signup impossible for non-chinese users, access to models possible through other apps?

    Baidu signup impossible for non-chinese users, access to models possible through other apps?

    Hi, Baidu doesn't accept international phone numbers so won't allow signing up. This will extremely limit the usage of your model. Have you copied your model weights in another platform such as google drive or microsoft onedrive?

    Please let me know. Thank you

    opened by shnamin 0
  • Tranfer Learning

    Tranfer Learning

    Hello, I have a question regarding training a custom dataset.

    How can I transfer learning of some specific classes from the pre-trained weights (e.g. dota) to my custom training if my custom classes are different from the pre-trained classes?
    

    Best regards and Thank you

    opened by wafa-bouzouita 1
Releases(v1.0.1)
Owner
yangxue
Welcome academic cooperation. WeChat: yangxue-0826
yangxue
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
22 Oct 14, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022