Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Related tags

Deep LearningPnP-GA
Overview

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Python 3.6 Pytorch 1.5.0 CUDA 10.2 License CC BY-NC

Our paper is accepted by ICCV2021.

Teaser

Picture: Overview of the proposed Plug-and-Play (PnP) adaption framework for generalizing gaze estimation to a new domain.

Main image

Picture: The proposed architecture.


Results

Input Method DE→DM DE→DD DG→DM DG→DD
Face Baseline 8.767 8.578 7.662 8.977
Face Baseline + PnP-GA 5.529 ↓36.9% 5.867 ↓31.6% 6.176 ↓19.4% 7.922 ↓11.8%
Face ResNet50 8.017 8.310 8.328 7.549
Face ResNet50 + PnP-GA 6.000 ↓25.2% 6.172 ↓25.7% 5.739 ↓31.1% 7.042 ↓6.7%
Face SWCNN 10.939 24.941 10.021 13.473
Face SWCNN + PnP-GA 8.139 ↓25.6% 15.794 ↓36.7% 8.740 ↓12.8% 11.376 ↓15.6%
Face + Eye CA-Net -- -- 21.276 30.890
Face + Eye CA-Net + PnP-GA -- -- 17.597 ↓17.3% 16.999 ↓44.9%
Face + Eye Dilated-Net -- -- 16.683 18.996
Face + Eye Dilated-Net + PnP-GA -- -- 15.461 ↓7.3% 16.835 ↓11.4%

This repository contains the official PyTorch implementation of the following paper:

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation
Yunfei Liu, Ruicong Liu, Haofei Wang, Feng Lu

Abstract: Deep neural networks have significantly improved appearance-based gaze estimation accuracy. However, it still suffers from unsatisfactory performance when generalizing the trained model to new domains, e.g., unseen environments or persons. In this paper, we propose a plugand-play gaze adaptation framework (PnP-GA), which is an ensemble of networks that learn collaboratively with the guidance of outliers. Since our proposed framework does not require ground-truth labels in the target domain, the existing gaze estimation networks can be directly plugged into PnP-GA and generalize the algorithms to new domains. We test PnP-GA on four gaze domain adaptation tasks, ETH-to-MPII, ETH-to-EyeDiap, Gaze360-to-MPII, and Gaze360-to-EyeDiap. The experimental results demonstrate that the PnP-GA framework achieves considerable performance improvements of 36.9%, 31.6%, 19.4%, and 11.8% over the baseline system. The proposed framework also outperforms the state-of-the-art domain adaptation approaches on gaze domain adaptation tasks.

Resources

Material related to our paper is available via the following links:

System requirements

  • Only Linux is tested, Windows is under test.
  • 64-bit Python 3.6 installation.

Playing with pre-trained networks and training

Config

You need to modify the config.yaml first, especially xxx/image, xxx/label, and xxx_pretrains params.

xxx/image represents the path of label file.

xxx/root represents the path of image file.

xxx_pretrains represents the path of pretrained models.

A example of label file is data folder. Each line in label file is conducted as:

p00/face/1.jpg 0.2558059438789034,-0.05467275933864655 -0.05843388117618364,0.46745964684693614 ... ...

Where our code reads image data form os.path.join(xxx/root, "p00/face/1.jpg") and reads ground-truth labels of gaze direction from the rest in label file.

Train

We provide three optional arguments, which are --oma2, --js and --sg. They repersent three different network components, which could be found in our paper.

--source and --target represent the datasets used as the source domain and the target domain. You can choose among eth, gaze360, mpii, edp.

--i represents the index of person which is used as the training set. You can set it as -1 for using all the person as the training set.

--pics represents the number of target domain samples for adaptation.

We also provide other arguments for adjusting the hyperparameters in our PnP-GA architecture, which could be found in our paper.

For example, you can run the code like:

python3 adapt.py --i 0 --pics 10 --savepath path/to/save --source eth --target mpii --gpu 0 --js --oma2 --sg

Test

--i, --savepath, --target are the same as training.

--p represents the index of person which is used as the training set in the adaptation process.

For example, you can run the code like:

python3 test.py --i -1 --p 0 --savepath path/to/save --target mpii

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{liu2021PnP_GA,
  title={Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation},
  author={Liu, Yunfei and Liu, Ruicong and Wang, Haofei and Lu, Feng},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact

If you have any questions, feel free to E-mail me via: lyunfei(at)buaa.edu.cn

Owner
Yunfei Liu
;-)
Yunfei Liu
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Github Traffic Insights as Prometheus metrics.

github-traffic Github Traffic collects your repository's traffic data and exposes it as Prometheus metrics. Grafana dashboard that displays the metric

Grafana Labs 34 Oct 27, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021