Interactive Image Generation via Generative Adversarial Networks

Overview

iGAN: Interactive Image Generation via Generative Adversarial Networks

Project | Youtube | Paper

Recent projects:
[pix2pix]: Torch implementation for learning a mapping from input images to output images.
[CycleGAN]: Torch implementation for learning an image-to-image translation (i.e., pix2pix) without input-output pairs.
[pytorch-CycleGAN-and-pix2pix]: PyTorch implementation for both unpaired and paired image-to-image translation.

Overview

iGAN (aka. interactive GAN) is the author's implementation of interactive image generation interface described in:
"Generative Visual Manipulation on the Natural Image Manifold"
Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, Alexei A. Efros
In European Conference on Computer Vision (ECCV) 2016

Given a few user strokes, our system could produce photo-realistic samples that best satisfy the user edits in real-time. Our system is based on deep generative models such as Generative Adversarial Networks (GAN) and DCGAN. The system serves the following two purposes:

  • An intelligent drawing interface for automatically generating images inspired by the color and shape of the brush strokes.
  • An interactive visual debugging tool for understanding and visualizing deep generative models. By interacting with the generative model, a developer can understand what visual content the model can produce, as well as the limitation of the model.

Please cite our paper if you find this code useful in your research. (Contact: Jun-Yan Zhu, junyanz at mit dot edu)

Getting started

  • Install the python libraries. (See Requirements).
  • Download the code from GitHub:
git clone https://github.com/junyanz/iGAN
cd iGAN
  • Download the model. (See Model Zoo for details):
bash ./models/scripts/download_dcgan_model.sh outdoor_64
  • Run the python script:
THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_main.py --model_name outdoor_64

Requirements

The code is written in Python2 and requires the following 3rd party libraries:

sudo apt-get install python-opencv
sudo pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
  • PyQt4: more details on Qt installation can be found here
sudo apt-get install python-qt4
sudo pip install qdarkstyle
sudo pip install dominate
  • GPU + CUDA + cuDNN: The code is tested on GTX Titan X + CUDA 7.5 + cuDNN 5. Here are the tutorials on how to install CUDA and cuDNN. A decent GPU is required to run the system in real-time. [Warning] If you run the program on a GPU server, you need to use remote desktop software (e.g., VNC), which may introduce display artifacts and latency problem.

Python3

For Python3 users, you need to replace pip with pip3:

  • PyQt4 with Python3:
sudo apt-get install python3-pyqt4
  • OpenCV3 with Python3: see the installation instruction.

Interface:

See [Youtube] at 2:18s for the interactive image generation demos.

Layout

  • Drawing Pad: This is the main window of our interface. A user can apply different edits via our brush tools, and the system will display the generated image. Check/Uncheck Edits button to display/hide user edits.
  • Candidate Results: a display showing thumbnails of all the candidate results (e.g., different modes) that fits the user edits. A user can click a mode (highlighted by a green rectangle), and the drawing pad will show this result.
  • Brush Tools: Coloring Brush for changing the color of a specific region; Sketching brush for outlining the shape. Warping brush for modifying the shape more explicitly.
  • Slider Bar: drag the slider bar to explore the interpolation sequence between the initial result (i.e., randomly generated image) and the current result (e.g., image that satisfies the user edits).
  • Control Panel: Play: play the interpolation sequence; Fix: use the current result as additional constraints for further editing Restart: restart the system; Save: save the result to a webpage. Edits: Check the box if you would like to show the edits on top of the generated image.

User interaction

  • Coloring Brush: right-click to select a color; hold left click to paint; scroll the mouse wheel to adjust the width of the brush.
  • Sketching Brush: hold left-click to sketch the shape.
  • Warping Brush: We recommend you first use coloring and sketching before the warping brush. Right-click to select a square region; hold left click to drag the region; scroll the mouse wheel to adjust the size of the square region.
  • Shortcuts: P for Play, F for Fix, R for Restart; S for Save; E for Edits; Q for quitting the program.
  • Tooltips: when you move the cursor over a button, the system will display the tooltip of the button.

Model Zoo:

Download the Theano DCGAN model (e.g., outdoor_64). Before using our system, please check out the random real images vs. DCGAN generated samples to see which kind of images that a model can produce.

bash ./models/scripts/download_dcgan_model.sh outdoor_64

We provide a simple script to generate samples from a pre-trained DCGAN model. You can run this script to test if Theano, CUDA, cuDNN are configured properly before running our interface.

THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python generate_samples.py --model_name outdoor_64 --output_image outdoor_64_dcgan.png

Command line arguments:

Type python iGAN_main.py --help for a complete list of the arguments. Here we discuss some important arguments:

  • --model_name: the name of the model (e.g., outdoor_64, shoes_64, etc.)
  • --model_type: currently only supports dcgan_theano.
  • --model_file: the file that stores the generative model; If not specified, model_file='./models/%s.%s' % (model_name, model_type)
  • --top_k: the number of the candidate results being displayed
  • --average: show an average image in the main window. Inspired by AverageExplorer, average image is a weighted average of multiple generated results, with the weights reflecting user-indicated importance. You can switch between average mode and normal mode by press A.
  • --shadow: We build a sketching assistance system for guiding the freeform drawing of objects inspired by ShadowDraw To use the interface, download the model hed_shoes_64 and run the following script
THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_main.py --model_name hed_shoes_64 --shadow --average

Dataset and Training

See more details here

Projecting an Image onto Latent Space

We provide a script to project an image into latent space (i.e., x->z):

  • Download the pre-trained AlexNet model (conv4):
bash models/scripts/download_alexnet.sh conv4
  • Run the following script with a model and an input image. (e.g., model: shoes_64.dcgan_theano, and input image ./pics/shoes_test.png)
THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_predict.py --model_name shoes_64 --input_image ./pics/shoes_test.png --solver cnn_opt
  • Check the result saved in ./pics/shoes_test_cnn_opt.png
  • We provide three methods: opt for optimization method; cnn for feed-forward network method (fastest); cnn_opt hybrid of the previous methods (default and best). Type python iGAN_predict.py --help for a complete list of the arguments.

Script without UI

We also provide a standalone script that should work without UI. Given user constraints (i.e., a color map, a color mask, and an edge map), the script generates multiple images that mostly satisfy the user constraints. See python iGAN_script.py --help for more details.

THEANO_FLAGS='device=gpu0, floatX=float32, nvcc.fastmath=True' python iGAN_script.py --model_name outdoor_64

Citation

@inproceedings{zhu2016generative,
  title={Generative Visual Manipulation on the Natural Image Manifold},
  author={Zhu, Jun-Yan and Kr{\"a}henb{\"u}hl, Philipp and Shechtman, Eli and Efros, Alexei A.},
  booktitle={Proceedings of European Conference on Computer Vision (ECCV)},
  year={2016}
}

Cat Paper Collection

If you love cats, and love reading cool graphics, vision, and learning papers, please check out our Cat Paper Collection:
[Github] [Webpage]

Acknowledgement

  • We modified the DCGAN code in our package. Please cite the original DCGAN paper if you use their models.
  • This work was supported, in part, by funding from Adobe, eBay, and Intel, as well as a hardware grant from NVIDIA. J.-Y. Zhu is supported by Facebook Graduate Fellowship.
Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022