Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Overview

Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Python 3.7 PyTorch 1.4 Apache

Official PyTorch implementation of the Calibrated Adversarial Refinement models described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation accepted at ICCV2021. An overview of the model architecture is depicted below. We show ambiguous boundary segmentation as a use case, where blue and red pixels in the input image are separable by different vertical boundaries, resulting in multiple valid labels.

image

Results on the stochastic version of the Cityscapes dataset are shown below. The leftmost column illustrates input images overlaid with ground truth labels, the middle section shows 8 randomly sampled predictions from the refinement network, and the final column shows aleatoric uncertainty maps extracted from the calibration network.

image image image

The code reproducing the illustrative toy regression example presented in Section 5.1. of the paper can be found in this repository.

Getting Started

Prerequisites

  • Python3
  • NVIDIA GPU + CUDA CuDNN

This was tested an Ubuntu 18.04 system, on a single 16GB Tesla V100 GPU, but might work on other operating systems as well.

Setup virtual environment

To install the requirements for this code run:

python3 -m venv ~/carsss_venv
source ~/carsss_venv/bin/activate
pip install -r requirements.txt

Directory tree

.
├── data
│   └── datasets
│       ├── lidc
│       └── cityscapes
│ 
├── models
│   ├── discriminators
│   ├── general
│   ├── generators
│   │   └── calibration_nets
│   └── losses
│        
├── results
│        └── output
│        
├── testing
│        
├── training
│        
└── utils

Datasets

For the 1D regression dataset experiments, please refer to this repository. Information on how to obtain the stochastic semantic segmentation datasets can be found below.

Download the LIDC dataset

The pre-processed 180x180 2D crops for the Lung Image Database Consortium (LIDC) image collection dataset (LIDC-IDRI) , as described in A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities (2019) and used in this work is made publicly available from Khol et. al, and can be downloaded from (here).

After downloading the dataset, extract each file under ./data/datasets/lidc/. This should give three folders under the said directory named: lidc_crops_test, lidc_crops_train, and lidc_crops_test.

Please note that the official repository of the Hierarchical Probabilistic U-Net , the version of the dataset linked above containts 8843 images for training, 1993 for validation and 1980 for testing rather than 8882, 1996 and 1992 images as used in our experiments, however, the score remains the same.

Download the pre-processed Cityscapes dataset with the black-box predictions

As described in our paper, we integrate our model on top of a black-box segmentation network. We used a pre-trained DeepLabV3+(Xception65+ASPP) model publicly available here . We found that this model obtains a mIoU score of 0.79 on the official test-set of the Cityscapes dataset (Cityscapes).

To get the official 19-class Cityscapes dataset:

  1. Visit the Cityscapes website and create an account
  2. Download the images and annotations
  3. Extract the files and move the folders gtFine and leftImg8bit in a new directory for the raw data i.e. ./data/datasets/cityscapes/raw_data.
  4. Create the 19-class labels by following this issue.
  5. Configure your data directories in ./data/datasets/cityscapes/preprocessing_config.py .
  6. Run ./data/datasets/cityscapes/preprocessing.py to pre-process the data in downscaled numpy arrays and save under ./data/datasets/cityscapes/processed.

Subsequently download the black-box predictions under ./data/datasets/cityscapes/, and extract by running tar -zxvf cityscapes_bb_preds.tar.gz

Finally, move the black-box predictions in the processed cityscapes folder and setup the test set run ./data/datasets/cityscapes/move_bb_preds.py

Train your own models

To train you own model on the LIDC dataset, set LABELS_CHANNELS=2 in line 29 of ./utils/constants.py run:

python main.py --mode train --debug '' --calibration_net SegNetCalNet --z_dim 8 --batch-size 32 --dataset LIDC --class_flip ''

To train you own model using the black-box predictions on the modified Cityscapes dataset, set LABELS_CHANNELS=25 in line 29 of ./utils/constants.py and run:

python main.py --mode train --debug '' --calibration_net ToyCalNet --z_dim 32 --batch-size 16 --dataset CITYSCAPES19 --class_flip True

Launching a run in train mode will create a new directory with the date and time of the start of your run under ./results/output/, where plots documenting the progress of the training and are saved and models are checkpointed. For example, a run launched on 12:00:00 on 1/1/2020 will create a new folder ./results/output/2020-01-01_12:00:00/ . To prevent the creation of this directory, set --debug False in the run command above.

Evaluation

LIDC pre-trained model

A pre-trained model on LIDC can be downloaded from here. To evaluate this model set LABELS_CHANNELS=2, move the downloaded pickle file under ./results/output/LIDC/saved_models/ and run:

python main.py --mode test --test_model_date LIDC --test_model_suffix LIDC_CAR_Model --calibration_net SegNetCalNet --z_dim 8 --dataset LIDC --class_flip ''

Cityscapes pre-trained model

A pre-trained model on the modified Cityscapes dataset can be downloaded from here. To evaluate this model set LABELS_CHANNELS=25 and IMSIZE = (256, 512) in ./utils/constants.py, move the downloaded pickle file under ./results/output/CS/saved_models/ and run:

python main.py --mode test --test_model_date CS --test_model_suffix CS_CAR_Model --calibration_net ToyCalNet --z_dim 32 --dataset CITYSCAPES19 --class_flip True

Citation

If you use this code for your research, please cite our paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation:

@InProceedings{Kassapis_2021_ICCV,
    author    = {Kassapis, Elias and Dikov, Georgi and Gupta, Deepak K. and Nugteren, Cedric},
    title     = {Calibrated Adversarial Refinement for Stochastic Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {7057-7067}
}

License

The code in this repository is published under the Apache License Version 2.0.

Owner
Elias Kassapis
MSc in Artificial Intelligence from the University of Amsterdam | BSc in Neuroscience from the University of Edinburgh
Elias Kassapis
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
A Python library that provides a simplified alternative to DBAPI 2

A Python library that provides a simplified alternative to DBAPI 2. It provides a facade in front of DBAPI 2 drivers.

Tony Locke 44 Nov 17, 2021
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021