Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Overview

Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Python 3.7 PyTorch 1.4 Apache

Official PyTorch implementation of the Calibrated Adversarial Refinement models described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation accepted at ICCV2021. An overview of the model architecture is depicted below. We show ambiguous boundary segmentation as a use case, where blue and red pixels in the input image are separable by different vertical boundaries, resulting in multiple valid labels.

image

Results on the stochastic version of the Cityscapes dataset are shown below. The leftmost column illustrates input images overlaid with ground truth labels, the middle section shows 8 randomly sampled predictions from the refinement network, and the final column shows aleatoric uncertainty maps extracted from the calibration network.

image image image

The code reproducing the illustrative toy regression example presented in Section 5.1. of the paper can be found in this repository.

Getting Started

Prerequisites

  • Python3
  • NVIDIA GPU + CUDA CuDNN

This was tested an Ubuntu 18.04 system, on a single 16GB Tesla V100 GPU, but might work on other operating systems as well.

Setup virtual environment

To install the requirements for this code run:

python3 -m venv ~/carsss_venv
source ~/carsss_venv/bin/activate
pip install -r requirements.txt

Directory tree

.
├── data
│   └── datasets
│       ├── lidc
│       └── cityscapes
│ 
├── models
│   ├── discriminators
│   ├── general
│   ├── generators
│   │   └── calibration_nets
│   └── losses
│        
├── results
│        └── output
│        
├── testing
│        
├── training
│        
└── utils

Datasets

For the 1D regression dataset experiments, please refer to this repository. Information on how to obtain the stochastic semantic segmentation datasets can be found below.

Download the LIDC dataset

The pre-processed 180x180 2D crops for the Lung Image Database Consortium (LIDC) image collection dataset (LIDC-IDRI) , as described in A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities (2019) and used in this work is made publicly available from Khol et. al, and can be downloaded from (here).

After downloading the dataset, extract each file under ./data/datasets/lidc/. This should give three folders under the said directory named: lidc_crops_test, lidc_crops_train, and lidc_crops_test.

Please note that the official repository of the Hierarchical Probabilistic U-Net , the version of the dataset linked above containts 8843 images for training, 1993 for validation and 1980 for testing rather than 8882, 1996 and 1992 images as used in our experiments, however, the score remains the same.

Download the pre-processed Cityscapes dataset with the black-box predictions

As described in our paper, we integrate our model on top of a black-box segmentation network. We used a pre-trained DeepLabV3+(Xception65+ASPP) model publicly available here . We found that this model obtains a mIoU score of 0.79 on the official test-set of the Cityscapes dataset (Cityscapes).

To get the official 19-class Cityscapes dataset:

  1. Visit the Cityscapes website and create an account
  2. Download the images and annotations
  3. Extract the files and move the folders gtFine and leftImg8bit in a new directory for the raw data i.e. ./data/datasets/cityscapes/raw_data.
  4. Create the 19-class labels by following this issue.
  5. Configure your data directories in ./data/datasets/cityscapes/preprocessing_config.py .
  6. Run ./data/datasets/cityscapes/preprocessing.py to pre-process the data in downscaled numpy arrays and save under ./data/datasets/cityscapes/processed.

Subsequently download the black-box predictions under ./data/datasets/cityscapes/, and extract by running tar -zxvf cityscapes_bb_preds.tar.gz

Finally, move the black-box predictions in the processed cityscapes folder and setup the test set run ./data/datasets/cityscapes/move_bb_preds.py

Train your own models

To train you own model on the LIDC dataset, set LABELS_CHANNELS=2 in line 29 of ./utils/constants.py run:

python main.py --mode train --debug '' --calibration_net SegNetCalNet --z_dim 8 --batch-size 32 --dataset LIDC --class_flip ''

To train you own model using the black-box predictions on the modified Cityscapes dataset, set LABELS_CHANNELS=25 in line 29 of ./utils/constants.py and run:

python main.py --mode train --debug '' --calibration_net ToyCalNet --z_dim 32 --batch-size 16 --dataset CITYSCAPES19 --class_flip True

Launching a run in train mode will create a new directory with the date and time of the start of your run under ./results/output/, where plots documenting the progress of the training and are saved and models are checkpointed. For example, a run launched on 12:00:00 on 1/1/2020 will create a new folder ./results/output/2020-01-01_12:00:00/ . To prevent the creation of this directory, set --debug False in the run command above.

Evaluation

LIDC pre-trained model

A pre-trained model on LIDC can be downloaded from here. To evaluate this model set LABELS_CHANNELS=2, move the downloaded pickle file under ./results/output/LIDC/saved_models/ and run:

python main.py --mode test --test_model_date LIDC --test_model_suffix LIDC_CAR_Model --calibration_net SegNetCalNet --z_dim 8 --dataset LIDC --class_flip ''

Cityscapes pre-trained model

A pre-trained model on the modified Cityscapes dataset can be downloaded from here. To evaluate this model set LABELS_CHANNELS=25 and IMSIZE = (256, 512) in ./utils/constants.py, move the downloaded pickle file under ./results/output/CS/saved_models/ and run:

python main.py --mode test --test_model_date CS --test_model_suffix CS_CAR_Model --calibration_net ToyCalNet --z_dim 32 --dataset CITYSCAPES19 --class_flip True

Citation

If you use this code for your research, please cite our paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation:

@InProceedings{Kassapis_2021_ICCV,
    author    = {Kassapis, Elias and Dikov, Georgi and Gupta, Deepak K. and Nugteren, Cedric},
    title     = {Calibrated Adversarial Refinement for Stochastic Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {7057-7067}
}

License

The code in this repository is published under the Apache License Version 2.0.

Owner
Elias Kassapis
MSc in Artificial Intelligence from the University of Amsterdam | BSc in Neuroscience from the University of Edinburgh
Elias Kassapis
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022