网络协议2天集训

Overview

网络协议2天集训

抓包工具安装

Wireshark

wireshark下载地址

Tcpdump

  1. CentOS
yum install tcpdump -y
  1. Ubuntu
apt-get install tcpdump -y

k8s抓包测试环境

查看虚拟网卡veth pair

查看网桥cni0上的虚拟网卡

[master]# yum install bridge-utils -y
[master]# brctl show
bridge name     bridge id               STP enabled     interfaces
cni0            8000.822a0551fe51       no              veth01d2bc26
                                                        veth1b7415be
                                                        veth48059492
                                                        veth6174f7d6
                                                        veth6a56ab55
                                                        vethf3807a14
                                                        vethfbd1eb75
docker0         8000.024218847f20       no

查找容器网卡对应的主机上veth pair

比如,容器tea-6fb46d899f-4zkt2的IP地址是10.244.0.60:

[[email protected] conf]# kubectl describe pod tea-6fb46d899f-4zkt2 | grep IP
IP:           10.244.0.60

它的MAC地址是B2:AD:3A:6E:3A:4F,如下:

[[email protected] conf]# kubectl exec -it tea-6fb46d899f-4zkt2 -- sh
/ $ ip addr
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue state UP 
    link/ether b2:ad:3a:6e:3a:4f brd ff:ff:ff:ff:ff:ff
    inet 10.244.0.60/24 brd 10.244.0.255 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::b0ad:3aff:fe6e:3a4f/64 scope link 
       valid_lft forever preferred_lft forever

注意,它的eth0序号是17。那么,它对应的主机veth pair虚拟网卡就是vetha1f852ea:

[[email protected] wp]# ip link show | egrep "veth" | awk -F":" '{print $1": "$2}'
14:  [email protected]
15:  [email protected]
16:  [email protected]
17:  [email protected]
18:  [email protected]
19:  [email protected]
20:  [email protected]
21:  [email protected]

当需要抓包时,用tcpdump -i vetha1f852ea即可抓取到容器报文:

[[email protected] wp]# tcpdump -i vetha1f852ea
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on vetha1f852ea, link-type EN10MB (Ethernet), capture size 262144 bytes


19:51:49.847648 IP 10.244.0.60.54477 > 10.96.0.10.domain: 58561+ A? www.baidu.com.default.svc.cluster.local. (57)
19:51:49.847731 IP 10.244.0.60.54477 > 10.96.0.10.domain: 59710+ AAAA? www.baidu.com.default.svc.cluster.local. (57)
19:51:49.849113 IP 10.244.0.58.domain > 10.244.0.60.54477: 59710 NXDomain*- 0/1/0 (150)
19:51:49.849268 IP 10.244.0.58.domain > 10.244.0.60.54477: 58561 NXDomain*- 0/1/0 (150)

跨L3三层vxlan网络抓包

当172.27.0.11主机上访问172.27.16.10主机上的10.244.1.3容器时,IP、MAC地址的获取如下:

Underlay层的IP与MAC地址

在源主机上执行ifconfig,从eth0上即可看到Underlay源IP为172.27.0.11,以及Underlay源MAC为52:54:00:c2:ee:db:

[[email protected] wp]# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.27.0.11  netmask 255.255.240.0  broadcast 172.27.15.255
        inet6 fe80::5054:ff:fec2:eedb  prefixlen 64  scopeid 0x20<link>
        ether 52:54:00:c2:ee:db  txqueuelen 1000  (Ethernet)
        RX packets 783420  bytes 872472212 (832.0 MiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 462834  bytes 135019947 (128.7 MiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

在目的主机上执行同样步骤,获取到Underlay目的IP为172.27.16.10:

[[email protected] ~]# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.27.16.10  netmask 255.255.240.0  broadcast 172.27.31.255
        inet6 fe80::5054:ff:fe4e:502  prefixlen 64  scopeid 0x20<link>
        ether 52:54:00:4e:05:02  txqueuelen 1000  (Ethernet)
        RX packets 39103520  bytes 6692916434 (6.2 GiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 1169194048  bytes 117270853999 (109.2 GiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

需要注意,Underlay目的MAC并不是52:54:00:4e:05:02!Underlay目的MAC实际上是交换机的MAC地址fe:ee:32:07:ea:07:

[[email protected] net]# arp -v
Address                  HWtype  HWaddress           Flags Mask            Iface
gateway                  ether   fe:ee:32:07:ea:07   C                     eth0

这样,Underlay层的4个地址都已得到!

Overlay层的IP与MAC地址

目标容器的IP地址是10.244.1.3,但MAC地址却不能是容器的MAC地址,而必须是flannel.1的地址,因为flannel程序需要将Underlay层剥离,同时修改Overlay层,所以目标MAC地址其实是2a:3c:a0:e1:a9:b6:

[[email protected] net]# arp -v
Address                  HWtype  HWaddress           Flags Mask            Iface
10.244.1.0               ether   2a:3c:a0:e1:a9:b6   CM                    flannel.1

而源IP地址与MAC要根据路由规则来。比如,访问10.244.1.3是通过flannel.1网卡进行的:

[[email protected] net]# ip route
default via 172.27.0.1 dev eth0
10.244.1.0/24 via 10.244.1.0 dev flannel.1 onlink
172.27.0.0/20 dev eth0 proto kernel scope link src 172.27.0.11

而flannel.1虚拟网卡的IP地址则是10.244.0.0:

[[email protected] net]# ifconfig flannel.1
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet 10.244.0.0  netmask 255.255.255.255  broadcast 10.244.0.0
ether 8e:5c:79:80:cd:cc  txqueuelen 0  (Ethernet)
[[email protected] net]# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.27.0.11  netmask 255.255.240.0  broadcast 172.27.15.255
ether 52:54:00:c2:ee:db  txqueuelen 1000  (Ethernet)

它的MAC地址则是8e:5c:79:80 💿 cc。

常见网络编码

ASCII编码

参见wiki,如果打不开,可以查看下表:

控制字符

二进制 十进制 十六进制 缩写 Unicode表示法 脱出字符表示法 名称/意义
0000 0000 0 00 NUL ^@ 空字符(Null)
0000 0001 1 01 SOH ^A 标题开始
0000 0010 2 02 STX ^B 本文开始
0000 0011 3 03 ETX ^C 本文结束
0000 0100 4 04 EOT ^D 传输结束
0000 0101 5 05 ENQ ^E 请求
0000 0110 6 06 ACK ^F 确认回应
0000 0111 7 07 BEL ^G 响铃
0000 1000 8 08 BS ^H 退格
0000 1001 9 09 HT ^I 水平定位符号
0000 1010 10 0A LF ^J 换行键
0000 1011 11 0B VT ^K 垂直定位符号
0000 1100 12 0C FF ^L 换页键
0000 1101 13 0D CR ^M CR (字符)
0000 1110 14 0E SO ^N 取消变换(Shift out)
0000 1111 15 0F SI ^O 启用变换(Shift in)
0001 0000 16 10 DLE ^P 跳出数据通讯
0001 0001 17 11 DC1 ^Q 设备控制一(XON 激活软件速度控制)
0001 0010 18 12 DC2 ^R 设备控制二
0001 0011 19 13 DC3 ^S 设备控制三(XOFF 停用软件速度控制)
0001 0100 20 14 DC4 ^T 设备控制四
0001 0101 21 15 NAK ^U 确认失败回应
0001 0110 22 16 SYN ^V 同步用暂停
0001 0111 23 17 ETB ^W 区块传输结束
0001 1000 24 18 CAN ^X 取消
0001 1001 25 19 EM ^Y 连线介质中断
0001 1010 26 1A SUB ^Z 替换
0001 1011 27 1B ESC ^[ 退出键
0001 1100 28 1C FS ^\ 文件分割符
0001 1101 29 1D GS ^] 组群分隔符
0001 1110 30 1E RS ^^ 记录分隔符
0001 1111 31 1F US ^_ 单元分隔符
0111 1111 127 7F DEL ^? Delete字符

可显示字符

二进制 十进制 十六进制 图形
0010 0000 32 20 (space)
0010 0001 33 21 !
0010 0010 34 22 "
0010 0011 35 23 #
0010 0100 36 24 $
0010 0101 37 25 %
0010 0110 38 26 &
0010 0111 39 27 '
0010 1000 40 28 (
0010 1001 41 29 )
0010 1010 42 2A *
0010 1011 43 2B +
0010 1100 44 2C ,
0010 1101 45 2D -
0010 1110 46 2E .
0010 1111 47 2F /
0011 0000 48 30 0
0011 0001 49 31 1
0011 0010 50 32 2
0011 0011 51 33 3
0011 0100 52 34 4
0011 0101 53 35 5
0011 0110 54 36 6
0011 0111 55 37 7
0011 1000 56 38 8
0011 1001 57 39 9
0011 1010 58 3A :
0011 1011 59 3B ;
0011 1100 60 3C <
0011 1101 61 3D =
0011 1110 62 3E >
0011 1111 63 3F ?
二进制 十进制 十六进制 图形
0100 0000 64 40 @
0100 0001 65 41 A
0100 0010 66 42 B
0100 0011 67 43 C
0100 0100 68 44 D
0100 0101 69 45 E
0100 0110 70 46 F
0100 0111 71 47 G
0100 1000 72 48 H
0100 1001 73 49 I
0100 1010 74 4A J
0100 1011 75 4B K
0100 1100 76 4C L
0100 1101 77 4D M
0100 1110 78 4E N
0100 1111 79 4F O
0101 0000 80 50 P
0101 0001 81 51 Q
0101 0010 82 52 R
0101 0011 83 53 S
0101 0100 84 54 T
0101 0101 85 55 U
0101 0110 86 56 V
0101 0111 87 57 W
0101 1000 88 58 X
0101 1001 89 59 Y
0101 1010 90 5A Z
0101 1011 91 5B [
0101 1100 92 5C \
0101 1101 93 5D ]
0101 1110 94 5E ^
0101 1111 95 5F _
二进制 十进制 十六进制 图形
0110 0000 96 60 `
0110 0001 97 61 a
0110 0010 98 62 b
0110 0011 99 63 c
0110 0100 100 64 d
0110 0101 101 65 e
0110 0110 102 66 f
0110 0111 103 67 g
0110 1000 104 68 h
0110 1001 105 69 i
0110 1010 106 6A j
0110 1011 107 6B k
0110 1100 108 6C l
0110 1101 109 6D m
0110 1110 110 6E n
0110 1111 111 6F o
0111 0000 112 70 p
0111 0001 113 71 q
0111 0010 114 72 r
0111 0011 115 73 s
0111 0100 116 74 t
0111 0101 117 75 u
0111 0110 118 76 v
0111 0111 119 77 w
0111 1000 120 78 x
0111 1001 121 79 y
0111 1010 122 7A z
0111 1011 123 7B {
0111 1100 124 7C
0111 1101 125 7D }
0111 1110 126 7E ~
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022