Almost State-of-the-art Text Generation library

Overview

Ps: we are adding transformer model soon

Text Gen 🐐

Downloads python tensorflow PyPI

Almost State-of-the-art Text Generation library

Text gen is a python library that allow you build a custom text generation model with ease 😄 Something sweet built with Tensorflow and Pytorch(coming soon) - This is the brain of Rosalove ai (https://rosalove.xyz/)

How to use it

Install text-gen

pip install -U text-gen

import the library

from text_gen import ten_textgen as ttg

Load your data. your data must be in a text format.

Download the example data from the example folder

load data

data = 'rl.csv'
text = ttg.loaddata(data)

build our Model Architeture

pipeline = ttg.tentext(text)
seq_text = pipeline.sequence(padding_method = 'pre')
configg = pipeline.configmodel(seq_text, lstmlayer = 128, activation = 'softmax', dropout = 0.25)

train model

model_history = pipeline.fit(loss = 'categorical_crossentropy', optimizer = 'adam', batch = 300, metrics = 'accuracy', epochs = 500, verbose = 0, patience = 10)

generate text using the phrase

pipeline.predict('hello love', word_length = 200, segment = True)

plot loss and accuracy

pipeline.plot_loss_accuracy()

Hyper parameter optimization

Tune your model to know the best optimizer, activation method to use.

pipeline.hyper_params(epochs = 500)
pipeline.saveModel('model')

use a saved model for prediction

#the corpus is the train text file
ttg.load_model_predict(corpus = corpus, padding_method = 'pre', modelname = '../input/model2/model2textgen.h5', sample_text = 'yo yo', word_length = 100)

Give us a star 🐉

If you want to contribute, take a look at the issues and the Futurework.md file

Contributors

Comments
  • use pipenv for managing dependencies

    use pipenv for managing dependencies

    Consider using (pipenv)[https://pypi.org/project/pipenv/] to pin your dependencies. This would allow contributors to easily reproduce the project without messing up the dependencies and its also good on the long run for maintainability

    opened by paularah 1
  • [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 661/1000
    Why? Recently disclosed, Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1319443 | pillow:
    6.2.2 -> 8.3.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • Read on how to create a simple python library

    Read on how to create a simple python library

    https://towardsdatascience.com/how-to-build-your-first-python-package-6a00b02635c9

    https://medium.com/analytics-vidhya/how-to-create-a-python-library-7d5aea80cc3f

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorflow-serving-api 1.12.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    GPyOpt 1.2.6 requires GPy, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3180413 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires grpcio, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires grpcio, which is not installed.
    parameter-sherpa 1.0.6 requires pymongo, which is not installed.
    parameter-sherpa 1.0.6 requires GPyOpt, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Fix for 23 vulnerabilities

    [Snyk] Fix for 23 vulnerabilities

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    parameter-sherpa 1.0.6 requires scikit-learn, which is not installed.
    GPy 1.10.0 requires paramz, which is not installed.
    GPy 1.10.0 requires cython, which is not installed.
    GPy 1.10.0 has requirement scipy<1.5.0,>=1.3.0, but you have scipy 1.2.3.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055461 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055462 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 509/1000
    Why? Has a fix available, CVSS 5.9 | Out-of-bounds Write
    SNYK-PYTHON-PILLOW-1059090 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1080635 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1080654 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081494 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081501 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081502 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 654/1000
    Why? Has a fix available, CVSS 8.8 | Heap-based Buffer Overflow
    SNYK-PYTHON-PILLOW-1082329 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Insufficient Validation
    SNYK-PYTHON-PILLOW-1082750 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090584 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090586 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090587 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090588 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292150 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292151 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 566/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.6 | Buffer Overflow
    SNYK-PYTHON-PILLOW-1316216 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-Bounds
    SNYK-PYTHON-PILLOW-574573 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574574 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574575 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574576 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 469/1000
    Why? Has a fix available, CVSS 5.1 | Buffer Overflow
    SNYK-PYTHON-PILLOW-574577 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SCIKITLEARN-1079100 | scikit-learn:
    0.20.4 -> 0.24.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
Releases(v1.9.0)
Owner
Emeka boris ama
Machine Learning Engineer, Data Scientist, Youtuber and Advocacy
Emeka boris ama
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021