Fuzzy Overclustering (FOC)

Overview

Fuzzy Overclustering (FOC)

In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in many applications these consistent annotations can not be given due to issues like intra- and interobserver variability. We call these inconsistent label fuzzy. Our method Fuzzy Overclustering overclusters the data and can therefore handle these fuzzy labels better than Out-of-the-Box Semi-Supervised Methods.

More details are given in the accpeted full paper at https://doi.org/10.3390/s21196661 or in the preprint https://arxiv.org/abs/2012.01768

The main idea is illustrated below. The graphic and caption are taken from the original work.

main idea of paper

Illustration of fuzzy data and overclustering -- The grey dots represent unlabeled data and the colored dots labeled data from different classes. The dashed lines represent decision boundaries. For certain data, a clear separation of the different classes with one decision boundary is possible and both classes contain the same amount of data (top). For fuzzy data determining a decision boundary is difficult because of intermediate datapoints between the classes (middle). These fuzzy datapoints can often not be easily sorted into one consistent class between annotators. If you overcluster the data, you get smaller but more consistent substructures in the fuzzy data (bottom). The images illustrate possible examples for \certain data (cat & dog) and \fuzzy plankton data (trichodesmium puff and tuft). The center plankton image was considered to be trichodesmium puff or tuft by around half of the annotators each. The left and right plankton image were consistently annotated as their respective class.

Installation

We advise to use docker for the experiments. We recommend a python3 container with tesnorflow 1.14 preinstalled. Additionally the following commands need to be executed:

apt-get update
apt-get install -y libsm6 libxext6 libxrender-dev libgl1-mesa-glx

After this ensure that the requirements from requirements.txt are installed. The most important packages are keras, scipy and opencv.

Usage

The parameters are given in arguments.yaml with their description. Most of the parameters can be left at the default value. Especially the dataset, batch size and epoch related parameters are imported.

As a rule of thumb the following should be applied:

  • overcluster_k = 5-6 * the number of classes
  • batch_size = repetition * overcluster_k * 2-3

You need to define three directories for the execution with docker:

  • DATASET_ROOT, this folder contains a folder with the dataset name. This folder contains a trainand val folder. It needs a folder unlabeled if the parameter unlabeled_data is used. Each folder contains subfolder with the given classes.
  • LOG_ROOT, inside a subdiretory logs all experimental results will be stored with regard to the given IDs and a time stamp
  • SRC_ROOT root of the this project source code

The DOCKER_IMAGE is the above defined image.

You can visualize the results with tensorboard --logdir . from inside the log_dir

Example Usages

bash % test pipeline running docker run -it --rm -v :/data-ssd -v :/data1 -v :/src -w="/src" python main.py --IDs foc experiment_name not_use_mi --dataset [email protected] --unlabeled_data [email protected] --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 --normal_epoch 2 --frozen_epoch 1 % training FOC-Light docker run -it --rm -v :/data-ssd -v :/data1 -v :/home -w="/home" python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 % training FOC (no warmup) % needs multiple GPUs or very large ones (change num gpu to 1 in this case) docker run -it --rm -v :/data-ssd -v :/data1 -v :/home -w="/home" python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 390 --batch_size 390 --overcluster_k 60 --num_gpus 3 --lambda_m 1 --sample_repetition 3 ">
% test container
docker run -it --rm -v 
               
                :/data-ssd -v 
                
                 :/data1   -v 
                 
                  :/src -w="/src" 
                  
                    bash


% test pipeline running
docker run -it --rm -v 
                   
                    :/data-ssd -v 
                    
                     :/data1 -v 
                     
                      :/src -w="/src" 
                      
                        python main.py --IDs foc experiment_name not_use_mi --dataset [email protected] --unlabeled_data [email protected] --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 --normal_epoch 2 --frozen_epoch 1 % training FOC-Light docker run -it --rm -v 
                       
                        :/data-ssd -v 
                        
                         :/data1 -v 
                         
                          :/home -w="/home" 
                          
                            python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 130 --batch_size 130 --overcluster_k 60 --num_gpus 1 % training FOC (no warmup) % needs multiple GPUs or very large ones (change num gpu to 1 in this case) docker run -it --rm -v 
                           
                            :/data-ssd -v 
                            
                             :/data1 -v 
                             
                              :/home -w="/home" 
                              
                                python main.py --experiment_identifiers foc experiment_name not_use_mi --dataset stl10 --frozen_batch_size 390 --batch_size 390 --overcluster_k 60 --num_gpus 3 --lambda_m 1 --sample_repetition 3 
                              
                             
                            
                           
                          
                         
                        
                       
                      
                     
                    
                   
                  
                 
                
               
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
22 Oct 14, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022