NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

Overview

NExT-QA

We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2 'Weak Accept's).

NExT-QA is a VideoQA benchmark targeting the explanation of video contents. It challenges QA models to reason about the causal and temporal actions and understand the rich object interactions in daily activities. We set up both multi-choice and open-ended QA tasks on the dataset. This repo. provides resources for multi-choice QA; open-ended QA is found in NExT-OE. For more details, please refer to our dataset page.

Environment

Anaconda 4.8.4, python 3.6.8, pytorch 1.6 and cuda 10.2. For other libs, please refer to the file requirements.txt.

Install

Please create an env for this project using anaconda (should install anaconda first)

>conda create -n videoqa python=3.6.8
>conda activate videoqa
>git clone https://github.com/doc-doc/NExT-QA.git
>pip install -r requirements.txt #may take some time to install

Data Preparation

Please download the pre-computed features and QA annotations from here. There are 4 zip files:

  • ['vid_feat.zip']: Appearance and motion feature for video representation. (With code provided by HCRN).
  • ['qas_bert.zip']: Finetuned BERT feature for QA-pair representation. (Based on pytorch-pretrained-BERT).
  • ['nextqa.zip']: Annotations of QAs and GloVe Embeddings.
  • ['models.zip']: Learned HGA model.

After downloading the data, please create a folder ['data/feats'] at the same directory as ['NExT-QA'], then unzip the video and QA features into it. You will have directories like ['data/feats/vid_feat/', 'data/feats/qas_bert/' and 'NExT-QA/'] in your workspace. Please unzip the files in ['nextqa.zip'] into ['NExT-QA/dataset/nextqa'] and ['models.zip'] into ['NExT-QA/models/'].

(You are also encouraged to design your own pre-computed video features. In that case, please download the raw videos from VidOR. As NExT-QA's videos are sourced from VidOR, you can easily link the QA annotations with the corresponding videos according to the key 'video' in the ['nextqa/.csv'] files, during which you may need the map file ['nextqa/map_vid_vidorID.json']).

Usage

Once the data is ready, you can easily run the code. First, to test the environment and code, we provide the prediction and model of the SOTA approach (i.e., HGA) on NExT-QA. You can get the results reported in the paper by running:

>python eval_mc.py

The command above will load the prediction file under ['results/'] and evaluate it. You can also obtain the prediction by running:

>./main.sh 0 val #Test the model with GPU id 0

The command above will load the model under ['models/'] and generate the prediction file. If you want to train the model, please run

>./main.sh 0 train # Train the model with GPU id 0

It will train the model and save to ['models']. (The results may be slightly different depending on the environments)

Results

Methods Text Rep. Acc_C Acc_T Acc_D Acc Text Rep. Acc_C Acc_T Acc_D Acc
BlindQA GloVe 26.89 30.83 32.60 30.60 BERT-FT 42.62 45.53 43.89 43.76
EVQA GloVe 28.69 31.27 41.44 31.51 BERT-FT 42.64 46.34 45.82 44.24
STVQA [CVPR17] GloVe 36.25 36.29 55.21 39.21 BERT-FT 44.76 49.26 55.86 47.94
CoMem [CVPR18] GloVe 35.10 37.28 50.45 38.19 BERT-FT 45.22 49.07 55.34 48.04
HME [CVPR19] GloVe 37.97 36.91 51.87 39.79 BERT-FT 46.18 48.20 58.30 48.72
HCRN [CVPR20] GloVe 39.09 40.01 49.16 40.95 BERT-FT 45.91 49.26 53.67 48.20
HGA [AAAI20] GloVe 35.71 38.40 55.60 39.67 BERT-FT 46.26 50.74 59.33 49.74
Human - 87.61 88.56 90.40 88.38 - 87.61 88.56 90.40 88.38

Multi-choice QA vs. Open-ended QA

vis mc_oe

Citation

@article{xiao2021next,
  title={NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions},
  author={Xiao, Junbin and Shang, Xindi and Yao, Angela and Chua, Tat-Seng},
  journal={arXiv preprint arXiv:2105.08276},
  year={2021}
}

Todo

  1. Open evaluation server and release test data.
  2. Release spatial feature.
  3. Release RoI feature.

Acknowledgement

Our reproduction of the methods are based on the respective official repositories, we thank the authors to release their code. If you use the related part, please cite the corresponding paper commented in the code.

Owner
Junbin Xiao
PhD Candidate
Junbin Xiao
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022