10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Overview

Under refactoring

10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Google Smartphone Decimeter Challenge

Global Navigation Satellite System (GNSS) provides raw signals, which the GPS chipset uses to compute a position.
Current mobile phones only offer 3-5 meters of positioning accuracy. While useful in many cases,
it can create a “jumpy” experience. For many use cases the results are not fine nor stable enough to be reliable.

This competition, hosted by the Android GPS team, is being presented at the ION GNSS+ 2021 Conference.
They seek to advance research in smartphone GNSS positioning accuracy
and help people better navigate the world around them.

In this competition, you'll use data collected from the host team’s own Android phones
to compute location down to decimeter or even centimeter resolution, if possible.
You'll have access to precise ground truth, raw GPS measurements,
and assistance data from nearby GPS stations, in order to train and test your submissions.
  • Predictions with host baseline for highway area(upper figure) are really good, but for downtown area(lower figure) are noisy due to the effect of Multipath. input_highway input_downtown

Overview

  • Predicting the Noise, Noise = Ground Truth - Baseline, like denoising in computer vision
  • Using the speed latDeg(t + dt) - latDeg(t)/dt as input instead of the absolute position for preventing overfitting on the train dataset.
  • Making 2D image input with Short Time Fourier Transform, STFT, and then using ImageNet convolutional neural network

image-20210806172801198 best_vs_hosbaseline

STFT and Conv Network Part

  • Input: Using librosa, generating STFT for both latDeg&lngDeg speeds.
    • Each phone sequence are split into 256 seconds sequence then STFT with n_tft=256, hop_length=1 and win_length=16 , result in (256, 127, 2) feature for each degree. The following 2D images are generated from 1D sequence.

image-20210806174449510

  • Model: Regression and Segmentation
    • Regression: EfficientNet B3, predict latDeg&lngDeg noise,
    • Segmentation: Unet ++ with EfficientNet encoder(segmentation pyroch) , predict stft noise
      • segmentation prediction + input STFT -> inverse STFT -> prediction of latDeg&lngDeg speeds

      • this speed prediction was used for:

        1. Low speed mask; The points of low speed area are replaced with its median.
        2. Speed disagreement mask: If the speed from position prediction and this speed prediction differ a lot, remove such points and interpolate.
      • prediction example for the segmentation. segmentation segmentation2

LightGBM Part

  • Input: IMU data excluding magnetic filed feature
    • also excluding y acceleration and z gyro because of phone mounting condition
    • adding moving average as additional features, window_size=5, 15, 45
  • Predict latDeg&lngDeg noise

KNN at downtown Part

similar to Snap to Grid, but using both global and local feature. Local re-ranking comes from the host baseline of GLR2021

  • Use train ground truth as database
  • Global search: query(latDeg&lngDeg) -> find 10 candidates
  • Local re-ranking: query(latDeg&lngDeg speeds and its moving averages) -> find 3 candidates -> taking mean over candidates

Public Post Process Part

There are lots of nice and effective PPs in public notebooks. Thanks to the all authors. I used the following notebooks.

score

  • Check each idea with late submissions.
  • actually conv position pred part implemented near deadline, before that I used only the segmentation model for STFT image.
status Host baseline + Public PP conv position pred gbm speed mask knn global knn local Private Board Score
1 day before deadline 3.07323
10 hours before deadline 2.80185
my best submission 2.61693
late sub 5.423
late sub 3.61910
late sub 3.28516
late sub 3.19016
late sub 2.81074
late sub 2.66377

How to run

environment

  • Ubuntu 18.04
  • Python with Anaconda
  • NVIDIA GPUx1

Data Preparation

First, download the data, here, and then place it like below.

../input/
    └ google-smartphone-decimeter-challenge/

During run, temporary cached will be stored under ../data/ and outputs will be stored under ../working/ through hydra.

Code&Pacakage Installation

# clone project
git clone https://github.com/Fkaneko/kaggle_Google_Smartphone_Decimeter_Challenge

# install project
cd kaggle_Google_Smartphone_Decimeter_Challenge
conda create -n gsdc_conv python==3.8.0
yes | bash install.sh
# at my case I need an additional run of `yes | bash install.sh` for installation.

Training/Testing

3 different models

  • for conv training, python train.py at each branch. Please check the src/config/config.yaml for the training configuration.
  • for LightGBM position you need mv ./src/notebook/lightgbm_position_prediction.ipynb ./ and then starting juypter notebook.
model branch training test
conv stft segmentation main ./train.py ./test.py
conv position conv_position ./train.py ./test.py
LightGBM position main ./src/notebook/lightgbm_position_prediction.ipynb included training notebook

Testing

10th place solution trained weights

I've uploaded pretrained weights as kaggle dataset, here. So extract it on ./ and you can see ./model_weights. And then running python test.py yields submission.csv. This csv will score ~2.61 at kaggle private dataset, which equals to 10th place.

your trained weights

For conv stft segmentation please change paths at the config, src/config/test_weights/compe_sub_github.yaml, and then run followings.

# at main branch
python test.py  \
     conv_pred_path="your conv position prediction csv path"\
     gbm_pred_path="your lightgbm position prediction path"

Regarding, conv_pred_path and gbm_pred_path, you need to create each prediction csv with the table above before run this code. Or you can use mv prediction results on the same kaggle dataset as pretrained weights.

License

Code

Apache 2.0

Dataset

Please check the kaggle page -> https://www.kaggle.com/c/google-smartphone-decimeter-challenge/rules

pretrained weights

These trained weights were generated from ImageNet pretrained weights. So please check ImageNet license if you use pretrained weights for a serious case.

Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022