10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Overview

Under refactoring

10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Google Smartphone Decimeter Challenge

Global Navigation Satellite System (GNSS) provides raw signals, which the GPS chipset uses to compute a position.
Current mobile phones only offer 3-5 meters of positioning accuracy. While useful in many cases,
it can create a “jumpy” experience. For many use cases the results are not fine nor stable enough to be reliable.

This competition, hosted by the Android GPS team, is being presented at the ION GNSS+ 2021 Conference.
They seek to advance research in smartphone GNSS positioning accuracy
and help people better navigate the world around them.

In this competition, you'll use data collected from the host team’s own Android phones
to compute location down to decimeter or even centimeter resolution, if possible.
You'll have access to precise ground truth, raw GPS measurements,
and assistance data from nearby GPS stations, in order to train and test your submissions.
  • Predictions with host baseline for highway area(upper figure) are really good, but for downtown area(lower figure) are noisy due to the effect of Multipath. input_highway input_downtown

Overview

  • Predicting the Noise, Noise = Ground Truth - Baseline, like denoising in computer vision
  • Using the speed latDeg(t + dt) - latDeg(t)/dt as input instead of the absolute position for preventing overfitting on the train dataset.
  • Making 2D image input with Short Time Fourier Transform, STFT, and then using ImageNet convolutional neural network

image-20210806172801198 best_vs_hosbaseline

STFT and Conv Network Part

  • Input: Using librosa, generating STFT for both latDeg&lngDeg speeds.
    • Each phone sequence are split into 256 seconds sequence then STFT with n_tft=256, hop_length=1 and win_length=16 , result in (256, 127, 2) feature for each degree. The following 2D images are generated from 1D sequence.

image-20210806174449510

  • Model: Regression and Segmentation
    • Regression: EfficientNet B3, predict latDeg&lngDeg noise,
    • Segmentation: Unet ++ with EfficientNet encoder(segmentation pyroch) , predict stft noise
      • segmentation prediction + input STFT -> inverse STFT -> prediction of latDeg&lngDeg speeds

      • this speed prediction was used for:

        1. Low speed mask; The points of low speed area are replaced with its median.
        2. Speed disagreement mask: If the speed from position prediction and this speed prediction differ a lot, remove such points and interpolate.
      • prediction example for the segmentation. segmentation segmentation2

LightGBM Part

  • Input: IMU data excluding magnetic filed feature
    • also excluding y acceleration and z gyro because of phone mounting condition
    • adding moving average as additional features, window_size=5, 15, 45
  • Predict latDeg&lngDeg noise

KNN at downtown Part

similar to Snap to Grid, but using both global and local feature. Local re-ranking comes from the host baseline of GLR2021

  • Use train ground truth as database
  • Global search: query(latDeg&lngDeg) -> find 10 candidates
  • Local re-ranking: query(latDeg&lngDeg speeds and its moving averages) -> find 3 candidates -> taking mean over candidates

Public Post Process Part

There are lots of nice and effective PPs in public notebooks. Thanks to the all authors. I used the following notebooks.

score

  • Check each idea with late submissions.
  • actually conv position pred part implemented near deadline, before that I used only the segmentation model for STFT image.
status Host baseline + Public PP conv position pred gbm speed mask knn global knn local Private Board Score
1 day before deadline 3.07323
10 hours before deadline 2.80185
my best submission 2.61693
late sub 5.423
late sub 3.61910
late sub 3.28516
late sub 3.19016
late sub 2.81074
late sub 2.66377

How to run

environment

  • Ubuntu 18.04
  • Python with Anaconda
  • NVIDIA GPUx1

Data Preparation

First, download the data, here, and then place it like below.

../input/
    └ google-smartphone-decimeter-challenge/

During run, temporary cached will be stored under ../data/ and outputs will be stored under ../working/ through hydra.

Code&Pacakage Installation

# clone project
git clone https://github.com/Fkaneko/kaggle_Google_Smartphone_Decimeter_Challenge

# install project
cd kaggle_Google_Smartphone_Decimeter_Challenge
conda create -n gsdc_conv python==3.8.0
yes | bash install.sh
# at my case I need an additional run of `yes | bash install.sh` for installation.

Training/Testing

3 different models

  • for conv training, python train.py at each branch. Please check the src/config/config.yaml for the training configuration.
  • for LightGBM position you need mv ./src/notebook/lightgbm_position_prediction.ipynb ./ and then starting juypter notebook.
model branch training test
conv stft segmentation main ./train.py ./test.py
conv position conv_position ./train.py ./test.py
LightGBM position main ./src/notebook/lightgbm_position_prediction.ipynb included training notebook

Testing

10th place solution trained weights

I've uploaded pretrained weights as kaggle dataset, here. So extract it on ./ and you can see ./model_weights. And then running python test.py yields submission.csv. This csv will score ~2.61 at kaggle private dataset, which equals to 10th place.

your trained weights

For conv stft segmentation please change paths at the config, src/config/test_weights/compe_sub_github.yaml, and then run followings.

# at main branch
python test.py  \
     conv_pred_path="your conv position prediction csv path"\
     gbm_pred_path="your lightgbm position prediction path"

Regarding, conv_pred_path and gbm_pred_path, you need to create each prediction csv with the table above before run this code. Or you can use mv prediction results on the same kaggle dataset as pretrained weights.

License

Code

Apache 2.0

Dataset

Please check the kaggle page -> https://www.kaggle.com/c/google-smartphone-decimeter-challenge/rules

pretrained weights

These trained weights were generated from ImageNet pretrained weights. So please check ImageNet license if you use pretrained weights for a serious case.

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023