PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

Related tags

Deep Learningloop
Overview

VoiceLoop

PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop is a neural text-to-speech (TTS) that is able to transform text to speech in voices that are sampled in the wild. Some demo samples can be found here.

Quick Links

Quick Start

Follow the instructions in Setup and then simply execute:

python generate.py  --npz data/vctk/numpy_features_valid/p318_212.npz --spkr 13 --checkpoint models/vctk/bestmodel.pth

Results will be placed in models/vctk/results. It will generate 2 samples:

You can also generate the same text but with a different speaker, specifically:

python generate.py  --npz data/vctk/numpy_features_valid/p318_212.npz --spkr 18 --checkpoint models/vctk/bestmodel.pth

Which will generate the following sample.

Here is the corresponding attention plot:

Legend: X-axis is output time (acoustic samples) Y-axis is input (text/phonemes). Left figure is speaker 10, right is speaker 14.

Finally, free text is also supported:

python generate.py  --text "hello world" --spkr 1 --checkpoint models/vctk/bestmodel.pth

Setup

Requirements: Linux/OSX, Python2.7 and PyTorch 0.1.12. Generation requires installing phonemizer, follow the setup instructions there. The current version of the code requires CUDA support for training. Generation can be done on the CPU.

git clone https://github.com/facebookresearch/loop.git
cd loop
pip install -r scripts/requirements.txt

Data

The data used to train the models in the paper can be downloaded via:

bash scripts/download_data.sh

The script downloads and preprocesses a subset of VCTK. This subset contains speakers with american accent.

The dataset was preprocessed using Merlin - from each audio clip we extracted vocoder features using the WORLD vocoder. After downloading, the dataset will be located under subfolder data as follows:

loop
├── data
    └── vctk
        ├── norm_info
        │   ├── norm.dat
        ├── numpy_feautres
        │   ├── p294_001.npz
        │   ├── p294_002.npz
        │   └── ...
        └── numpy_features_valid

The preprocess pipeline can be executed using the following script by Kyle Kastner: https://gist.github.com/kastnerkyle/cc0ac48d34860c5bb3f9112f4d9a0300.

Pretrained Models

Pretrainde models can be downloaded via:

bash scripts/download_models.sh

After downloading, the models will be located under subfolder models as follows:

loop
├── data
├── models
    ├── blizzard
    ├── vctk
    │   ├── args.pth
    │   └── bestmodel.pth
    └── vctk_alt

Update 10/25/2017: Single speaker model available in models/blizzard/

SPTK and WORLD

Finally, speech generation requires SPTK3.9 and WORLD vocoder as done in Merlin. To download the executables:

bash scripts/download_tools.sh

Which results the following sub directories:

loop
├── data
├── models
├── tools
    ├── SPTK-3.9
    └── WORLD

Training

Single-Speaker

Single speaker model is trained on blizzard 2011. Data should be downloaded and prepared as described above. Once the data is ready, run:

python train.py --noise 1 --expName blizzard_init --seq-len 1600 --max-seq-len 1600 --data data/blizzard --nspk 1 --lr 1e-5 --epochs 10

Then, continue training the model with :

python train.py --noise 1 --expName blizzard --seq-len 1600 --max-seq-len 1600 --data data/blizzard --nspk 1 --lr 1e-4 --checkpoint checkpoints/blizzard_init/bestmodel.pth --epochs 90

Multi-Speaker

Training a new model on vctk, first train the model using noise level of 4 and input sequence length of 100:

python train.py --expName vctk --data data/vctk --noise 4 --seq-len 100 --epochs 90

Then, continue training the model using noise level of 2, on full sequences:

python train.py --expName vctk_noise_2 --data data/vctk --checkpoint checkpoints/vctk/bestmodel.pth --noise 2 --seq-len 1000 --epochs 90

Citation

If you find this code useful in your research then please cite:

@article{taigman2017voice,
  title           = {VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop},
  author          = {Taigman, Yaniv and Wolf, Lior and Polyak, Adam and Nachmani, Eliya},
  journal         = {ArXiv e-prints},
  archivePrefix   = "arXiv",
  eprinttype      = {arxiv},
  eprint          = {1705.03122},
  primaryClass    = "cs.CL",
  year            = {2017}
  month           = October,
}

License

Loop has a CC-BY-NC license.

Owner
Meta Archive
These projects have been archived and are generally unsupported, but are still available to view and use
Meta Archive
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
3 Apr 20, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023