MacroTools provides a library of tools for working with Julia code and expressions.

Overview

MacroTools.jl

Build Status

MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system and code-walking tools that let you do deep transformations of code in a few lines. See the docs for more info.

Suggestions, issues and pull requsts are welcome.

Installation

]add MacroTools
Comments
  • Fixes 165, Fixes 177.

    Fixes 165, Fixes 177.

    A partial rewrite of splitarg and combinearg to fix https://github.com/FluxML/MacroTools.jl/issues/165 and https://github.com/FluxML/MacroTools.jl/issues/177.

    The big change here is that arg_type can be nothing if no type is declared for an argument. I know that this is a change to the interface, but I also see no other way to fix the problem. While we are changing the interface, we may want to consider handling literal nothing as an argument default through the base Some and something interface. (discussed in https://github.com/FluxML/MacroTools.jl/issues/35).

    opened by willow-ahrens 23
  • Option to deterministically generate unique ids instead of randomized animal names

    Option to deterministically generate unique ids instead of randomized animal names

    There are a couple of problems with the current animal name scheme used in alias_gensyms:

    1. There are only about 220 animal names in animals.txt. If you have more than 220 gensyms the following line in the current alias_gensyms function is going to error out:

    [email protected]!(syms, x, pop!(left))

    (left is a copy of the animals symbol list)

    1. Currently, the animal names list is randomized when the package is initialized. While working on ONNX.jl we were finding that given the same inputs we would get different code generated due to this randomization. This makes it very difficult for us to debug as we made changes to ONNX.jl and wanted to compare code generated from a prior version on the same inputs.

    This patch generates a simple unique id in the form of "sym_id_$counter" where the counter value is incremented on each gensym encountered.

    I would have preferred replacing all of the "#" characters in the gensym with blanks, however that did not work for me even though I tried the same scheme in the REPL on a gensym string and it did work (see the comment I added in alias_gensyms - maybe someone could get that working?)

    opened by philtomson 13
  • Support function return types in longdef/shortdef

    Support function return types in longdef/shortdef

    I also have a function that uses MacroTools to parse any function definition and return (name, arg, kwargs, body, return_type). Would that be accepted?

    opened by cstjean 13
  • more faithfully reconstruct original function in combinedef

    more faithfully reconstruct original function in combinedef

    Previously combinedef would put an ::Any return type annotation on any function it reconstructed that didn't have one originally, and also wrap the function body in one extra begin block. These both seem completely superfluous except amazingly when combined they trigger the bug I reported here: https://github.com/JuliaLang/julia/issues/29326.

    This PR gets rid of those things and more faithfully reconstructs the original function.

    I also switched to returning the expression via @q which would allow whatever macro is calling combinedef to insert the desired line numbers in there.

    opened by marius311 9
  • move shuffling of animals to be done on demand instead of during initialization

    move shuffling of animals to be done on demand instead of during initialization

    This package is heavily used throughout the ecosystem so optimizing its load time is quite important. The compilation time of the shuffle! call in the __init__ function adds quite a bit of overhead, so I moved this to be done the first time the variable is actually used instead.

    Without this PR:

    julia> @time using MacroTools
      0.067275 seconds (142.56 k allocations: 9.640 MiB, 61.33% compilation time)
    

    With this PR:

    julia> @time using MacroTools
      0.024947 seconds (28.79 k allocations: 3.159 MiB, 22.04% compilation time)
    

    It also removed quite a bit of "noise" when profiling other packages load time that happens to depend on this pacakge recursively.

    opened by KristofferC 8
  • code quality improvements from JET analysis

    code quality improvements from JET analysis

    I ran JET analysis on this package, and fixed some true positive errors.

    run JET on MacroTools

    julia> using JET
    julia> report_file("src/MacroTools.jl"; analyze_from_definitions = true, annotate_types = true)
    

    Before this PR

    ═════ 11 possible errors found ═════
    ┌ @ src/match/match.jl:27 Base.getproperty(Base.getproperty(MacroTools.Base, :match::Symbol)::typeof(match)(r"^@?(.*?)_+(_str)?$", MacroTools.string(s::Symbol)::String)::Union{Nothing, RegexMatch}, :captures::Symbol)
    │┌ @ Base.jl:33 Base.getfield(x::Nothing, f::Symbol)
    ││ type Nothing has no field captures
    │└──────────────
    ┌ @ src/match/types.jl:20 MacroTools.map(MacroTools.totype, ts::Vector{Symbol})
    │┌ @ abstractarray.jl:2301 Base.collect_similar(A::Vector{Symbol}, Base.Generator(f::typeof(MacroTools.totype), A::Vector{Symbol})::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})
    ││┌ @ array.jl:620 Base._collect(cont::Vector{Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, Base.IteratorEltype(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.EltypeUnknown, Base.IteratorSize(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.HasShape{1})
    │││┌ @ array.jl:710 Base.collect_to_with_first!(Base._similar_for(c::Vector{Symbol}, Base.typeof(v1::Union{Expr, Symbol})::Union{Type{Expr}, Type{Symbol}}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, isz::Base.HasShape{1})::Union{Vector{Expr}, Vector{Symbol}}, v1::Union{Expr, Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, st::Int64)
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Symbol}, v1::Expr, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Symbol}, x::Expr)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Symbol}, x::Expr)
    │││││└────────────────
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Expr}, v1::Symbol, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Expr}, x::Symbol)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Expr}, x::Symbol)
    │││││└────────────────
    ┌ @ src/utils.jl:21 Base.collect(Base.Generator(#11::MacroTools.var"#11#12", MacroTools.map(MacroTools.esc, xs::Tuple)::Any)::Base.Generator{_A, MacroTools.var"#11#12"} where _A)
    │┌ @ array.jl:697 Base.collect_to_with_first!(Base._array_for(Base.typeof(v1::Expr)::Type{Expr}, Base.getproperty(itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, :iter::Symbol)::Any, isz::Any)::Any, v1::Expr, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    ││┌ @ array.jl:721 Base.grow_to!(dest::Any, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    │││┌ @ dict.jl:153 Base.indexed_iterate(Core.getfield(Base.indexed_iterate(y::Tuple{Expr, Any}, 1)::Tuple{Expr, Int64}, 1)::Expr, 1)
    ││││┌ @ tuple.jl:89 Base.iterate(I::Expr)
    │││││ no matching method found for call signature: Base.iterate(I::Expr)
    ││││└───────────────
    ┌ @ src/utils.jl:423 MacroTools.rebuilddef(MacroTools.striplines(dict::Dict)::Dict)
    │ variable MacroTools.rebuilddef is not defined: MacroTools.rebuilddef(MacroTools.striplines(dict::Dict)::Dict)
    └────────────────────
    ┌ @ src/utils.jl:455 Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, default::Any)::Tuple{Bool, Any}...)
    │ no matching method found for call signature: Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, default::Any)::Tuple{Bool, Any}...)
    └────────────────────
    ┌ @ src/utils.jl:457 Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg_expr2::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, MacroTools.nothing)::Tuple{Bool, Nothing}...)
    │ no matching method found for call signature: Core.tuple(splitvar::MacroTools.var"#splitvar#35"(arg_expr2::Any)::Union{Nothing, Tuple{Any, Any}}, Core.tuple(is_splat::Bool, MacroTools.nothing)::Tuple{Bool, Nothing}...)
    └────────────────────
    ┌ @ src/structdef.jl:13 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/structdef.jl:21 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/structdef.jl:29 MacroTools.parse_error(ex::Any)
    │ variable MacroTools.parse_error is not defined: MacroTools.parse_error(ex::Any)
    └───────────────────────
    ┌ @ src/examples/destruct.jl:24 MacroTools.error("Can't destructure fields with default values")
    │┌ @ error.jl:33 error(::String)
    ││ may throw: Base.throw($(Expr(:invoke, MethodInstance for ErrorException(::String), :(Base.ErrorException), Core.Argument(2)))::ErrorException)
    │└───────────────
    

    After this PR: only the false positives ramain (Julia's inference or JET itself should be improved)

    ═════ 4 possible errors found ═════
    ┌ @ src/match/types.jl:20 MacroTools.map(MacroTools.totype, ts::Vector{Symbol})
    │┌ @ abstractarray.jl:2301 Base.collect_similar(A::Vector{Symbol}, Base.Generator(f::typeof(MacroTools.totype), A::Vector{Symbol})::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})
    ││┌ @ array.jl:620 Base._collect(cont::Vector{Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, Base.IteratorEltype(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.EltypeUnknown, Base.IteratorSize(itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)})::Base.HasShape{1})
    │││┌ @ array.jl:710 Base.collect_to_with_first!(Base._similar_for(c::Vector{Symbol}, Base.typeof(v1::Union{Expr, Symbol})::Union{Type{Expr}, Type{Symbol}}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, isz::Base.HasShape{1})::Union{Vector{Expr}, Vector{Symbol}}, v1::Union{Expr, Symbol}, itr::Base.Generator{Vector{Symbol}, typeof(MacroTools.totype)}, st::Int64)
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Symbol}, v1::Expr, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Symbol}, x::Expr)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Symbol}, x::Expr)
    │││││└────────────────
    ││││┌ @ array.jl:715 Base.setindex!(dest::Vector{Expr}, v1::Symbol, i1::Int64)
    │││││┌ @ array.jl:853 Base.convert(_::Type{Expr}, x::Symbol)
    ││││││ no matching method found for call signature: Base.convert(_::Type{Expr}, x::Symbol)
    │││││└────────────────
    ┌ @ src/utils.jl:21 Base.collect(Base.Generator(#11::MacroTools.var"#11#12", MacroTools.map(MacroTools.esc, xs::Tuple)::Any)::Base.Generator{_A, MacroTools.var"#11#12"} where _A)
    │┌ @ array.jl:697 Base.collect_to_with_first!(Base._array_for(Base.typeof(v1::Expr)::Type{Expr}, Base.getproperty(itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, :iter::Symbol)::Any, isz::Any)::Any, v1::Expr, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    ││┌ @ array.jl:721 Base.grow_to!(dest::Any, itr::Base.Generator{_A, MacroTools.var"#11#12"} where _A, st::Any)
    │││┌ @ dict.jl:153 Base.indexed_iterate(Core.getfield(Base.indexed_iterate(y::Tuple{Expr, Any}, 1)::Tuple{Expr, Int64}, 1)::Expr, 1)
    ││││┌ @ tuple.jl:89 Base.iterate(I::Expr)
    │││││ no matching method found for call signature: Base.iterate(I::Expr)
    ││││└───────────────
    ┌ @ src/examples/destruct.jl:24 MacroTools.error("Can't destructure fields with default values")
    │┌ @ error.jl:33 error(::String)
    ││ may throw: Base.throw($(Expr(:invoke, MethodInstance for ErrorException(::String), :(Base.ErrorException), Core.Argument(2)))::ErrorException)
    │└───────────────
    
    opened by aviatesk 8
  • improve code quality and type instabilities

    improve code quality and type instabilities

    I used JET and fixed some actual errors and type instabilities. (this PR is the final output of my demo at our workshop)

    /cc @pfitzseb Could you review this PR, please ? :)

    opened by aviatesk 7
  • splitarg incompatible with kwargs on 1.7

    splitarg incompatible with kwargs on 1.7

    Therefore, it is no longer safe to do funcdef[:kwargs] = map(arg->combinearg(splitarg(arg)...), funcdef[:kwargs], since this would transform a definition like f(;kwargs...) to f(;kwargs::Any...) which is no longer allowed in Julia 1.7. I don't know why that's no longer allowed, but from the REPL:

    ERROR: syntax: "x::Any" is not a valid function argument name around REPL[3]:1
    Stacktrace:
     [1] top-level scope
       @ REPL[3]:1
    
    opened by willow-ahrens 6
  • make

    make "slurp" pattern configurable

    This PR setups IGNORED_SLURP_PATTERNS::Set{Symbol}, which allows users to configure patterns that should not be recognized as "slurp"s.

    The motivation here is that there can be double-scores in variable names and so we sometimes may want them not to be recognized as "slurp" pattern.

    For example, let's consider when we want to specify a pattern that only matches __init__() expression:

    julia> @capture(:(__init__()), __init__()), @capture(:(foo()), __init__()) # you may want the latter case not to match
    (true, true)
    

    With this PR, we can configure IGNORED_SLURP_PATTERNS and achieve what we want:

    julia> push!(MacroTools.IGNORED_SLURP_PATTERNS, :__init__); # configure `IGNORED_SLURP_PATTERNS`
    
    julia> @capture(:(__init__()), __init__()), @capture(:(foo()), __init__()) # now `__init__` isn't recognized as slurp pattern
    (true, false)
    

    IGNORED_SLURP_PATTERNS is initialized as an empty set, and thus this change doesn't break any existing behavior by default.

    opened by aviatesk 6
  • don't use exceptions to implement `ismatch` and `trymatch`

    don't use exceptions to implement `ismatch` and `trymatch`

    This is causing https://github.com/JuliaLang/julia/issues/28221. At least for APIs that return a result instead of exposing MatchError, the package should use return values instead of exceptions.

    opened by JeffBezanson 5
  • bizzare match failure for macros in type assertions

    bizzare match failure for macros in type assertions

    MacroTools can't match macros when they appear in the type assertions in function calls. This seems like a crazy issue, but a key macro in my package depended on this functionality and now something has changed with the latest julia build and things fail. Any ideas as to why this match failure would happen?

                   _
       _       _ _(_)_     |  A fresh approach to technical computing
      (_)     | (_) (_)    |  Documentation: https://docs.julialang.org
       _ _   _| |_  __ _   |  Type "?" for help, "]?" for Pkg help.
      | | | | | | |/ _` |  |
      | | |_| | | | (_| |  |  Version 0.7.0-DEV.5246 (2018-05-29 13:27 UTC)
     _/ |\__'_|_|_|\__'_|  |  Commit 082be9a (8 days old master)
    |__/                   |  x86_64-apple-darwin17.5.0
    
    (v0.7) pkg> up MacroTools
      Updating registry at `~/.julia/registries/Uncurated`
      Updating git-repo `https://github.com/JuliaRegistries/Uncurated.git`
     Resolving package versions...
      Updating `~/.julia/environments/v0.7/Project.toml`
     [no changes]
      Updating `~/.julia/environments/v0.7/Manifest.toml`
     [no changes]
    
    julia> using MacroTools
    
    julia> x = :(foo(x::@bar(qux))).args[2].args[2]
    :(#= REPL[3]:1 =# @bar qux)
    
    julia> :(@bar(qux))
    :(#= REPL[4]:1 =# @bar qux)
    
    julia> x.head
    :macrocall
    
    julia> :(@bar(qux)).head
    :macrocall
    
    julia> x.args
    3-element Array{Any,1}:
     Symbol("@bar")
     :(#= REPL[3]:1 =#)
     :qux
    
    julia> :(@bar(qux)).args
    3-element Array{Any,1}:
     Symbol("@bar")
     :(#= REPL[8]:1 =#)
     :qux
    
    julia> @capture(x, @bar(qux))
    false
    
    julia> @capture(:(@bar(qux)), @bar(qux))
    true
    

    EDIT: It appears that this has something to do with line number nodes getting passed as arguments to macros. I rolled a custom solution for myself, but I'll dig into this sometime when I have more time. I don't think this has anything to do with the type assertions at all now.

    opened by willow-ahrens 5
  • Splitdef errors on anonymous function with a single varargs argument

    Splitdef errors on anonymous function with a single varargs argument

    splitdef fails with an assertion on an anonymous function with a single varargs argument:

    julia> splitdef(Meta.parse(" (args...) -> 0 "))
    ERROR: ArgumentError: Not a function definition: :(args...->begin
              #= none:1 =#
              0
          end)
    Stacktrace:
     [1] splitdef(fdef::Expr)
       @ MacroTools ~/.julia/packages/MacroTools/PP9IQ/src/utils.jl:317
    

    Either adding another argument or using the long form of the definition is fine:

    julia> splitdef(Meta.parse(" (x, args...) -> 0 "))
    Dict{Symbol, Any} with 4 entries:
      :args        => Any[:x, :(args...)]
      :body        => quote…
      :kwargs      => Any[]
      :whereparams => ()
    
    julia> splitdef(Meta.parse(" function f(args...) 0 end "))
    Dict{Symbol, Any} with 5 entries:
      :name        => :f
      :args        => Any[:(args...)]
      :kwargs      => Any[]
      :body        => quote…
      :whereparams => ()
    
    opened by julbinb 1
  • @capture union problem

    @capture union problem

    Similar to what was noted in https://github.com/FluxML/MacroTools.jl/issues/40#issuecomment-357466077,

    julia> @capture :(myvariable = 2) (lhs_Symbol = rhs_)
    true
    
    julia> @capture :(myvariable = 2) (lhs_Symbol = rhs_) | someotherpat
    false
    
    julia> @capture :(myvariable = 2) (lhs_ = rhs_) | someotherpat
    true
    

    The second match should be true as well.

    opened by cstjean 0
  • add dict interface splitargdef and combineargdef

    add dict interface splitargdef and combineargdef

    This PR adds new methods splitargdef and combineargdef (in addition to existing splitarg and combinearg) that use dictionaries as an interface. The dict interface more completely expresses corner cases, as described in https://github.com/FluxML/MacroTools.jl/pull/178. In particular, it provides robust solutions for literal nothing argument defaults and avoids typeasserts when no type is given for an argument.

    opened by willow-ahrens 5
  • `isdef()` seems to return true in any case

    `isdef()` seems to return true in any case

    help?> MacroTools.isdef
      Test for function definition expressions.
    
    julia> MacroTools.isdef(:(f() = 3))
    true
    
    julia> MacroTools.isdef(:(f()))
    true
    
    julia> MacroTools.isdef(:ix)
    true
    
    
    opened by omlins 2
  • rmlines would be more useful if it worked recursively

    rmlines would be more useful if it worked recursively

    rmlines would be more useful it it worked recursively.

    rmlines(Meta.parse("""
    begin
       begin
          begin
    end
    end
    end"""))
    quote
        begin
            #= none:3 =#
            begin
                #= none:4 =#
            end
        end
    end
    

    Yes, one could use postwalk, but I don't think one should have to.

    Also, why isn't postwalk exported?

    At the very least, the documentation should manage expectations by saying that it doesn'[t work recursively and suggesting the use of postwalk.

    opened by MarkNahabedian 1
Releases(v0.5.10)
Owner
FluxML
The Elegant Machine Learning Stack
FluxML
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022