Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

Overview
alternate text

3D Convolutional Neural Networks for Speaker Verification - Official Project Page

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.svg?v=102 https://img.shields.io/twitter/follow/amirsinatorfi.svg?label=Follow&style=social

Table of Contents

This repository contains the Pytorch code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well.

The code has been developed using Pytorch. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

readme_images/conv_gif.gif

Citation

If you used this code, please kindly consider citing the following paper:

@article{torfi2017text,
  title={Text-independent speaker verification using 3d convolutional neural networks},
  author={Torfi, Amirsina and Nasrabadi, Nasser M and Dawson, Jeremy},
  journal={arXiv preprint arXiv:1705.09422},
  year={2017}
}

General View

We leveraged 3D convolutional architecture for creating the speaker model in order to simultaneously capturing the speech-related and temporal information from the speakers' utterances.

Speaker Verification Protocol(SVP)

In this work, a 3D Convolutional Neural Network (3D-CNN) architecture has been utilized for text-independent speaker verification in three phases.

1. At the development phase, a CNN is trained to classify speakers at the utterance-level.

2. In the enrollment stage, the trained network is utilized to directly create a speaker model for each speaker based on the extracted features.

3. Finally, in the evaluation phase, the extracted features from the test utterance will be compared to the stored speaker model to verify the claimed identity.

The aforementioned three phases are usually considered as the SV protocol. One of the main challenges is the creation of the speaker models. Previously-reported approaches create speaker models based on averaging the extracted features from utterances of the speaker, which is known as the d-vector system.

How to leverage 3D Convolutional Neural Networks?

In our paper, we propose the implementation of 3D-CNNs for direct speaker model creation in which, for both development and enrollment phases, an identical number of speaker utterances is fed to the network for representing the spoken utterances and creation of the speaker model. This leads to simultaneously capturing the speaker-related information and building a more robust system to cope with within-speaker variation. We demonstrate that the proposed method significantly outperforms the d-vector verification system.

Dataset

Unlike the Original Implementaion, here we used the VoxCeleb publicy available dataset. The dataset contains annotated audio files. For Speaker Verification, the parts of the audio associated with the subject of interest, however, must be extracted from the raw audio files.

Three steps should be taken to prepare the data after downloading the data associated files.

  1. Extract the specific audio part that the subject of interest is speaking.[extract_audio.py]
  2. Create train/test phase.[create_phases.py]
  3. Voice Activity Detection to remove the silence. [vad.py]

Creating the dataset object, necessary preprocessing and feature extraction will be performed in the following data class:

1000, "Bad file!" # Add to list if file is OK! list_files.append(x.strip()) except: print('file %s is corrupted!' % sound_file_path) # Save the correct and healthy sound files to a list. self.sound_files = list_files def __len__(self): return len(self.sound_files) def __getitem__(self, idx): # Get the sound file path sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1] ">
class AudioDataset():
"""Audio dataset."""

    def __init__(self, files_path, audio_dir, transform=None):
        """
        Args:
            files_path (string): Path to the .txt file which the address of files are saved in it.
            root_dir (string): Directory with all the audio files.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """

        # self.sound_files = [x.strip() for x in content]
        self.audio_dir = audio_dir
        self.transform = transform

        # Open the .txt file and create a list from each line.
        with open(files_path, 'r') as f:
            content = f.readlines()
        # you may also want to remove whitespace characters like `\n` at the end of each line
        list_files = []
        for x in content:
            sound_file_path = os.path.join(self.audio_dir, x.strip().split()[1])
            try:
                with open(sound_file_path, 'rb') as f:
                    riff_size, _ = wav._read_riff_chunk(f)
                    file_size = os.path.getsize(sound_file_path)

                # Assertion error.
                assert riff_size == file_size and os.path.getsize(sound_file_path) > 1000, "Bad file!"

                # Add to list if file is OK!
                list_files.append(x.strip())
            except:
                print('file %s is corrupted!' % sound_file_path)

        # Save the correct and healthy sound files to a list.
        self.sound_files = list_files

    def __len__(self):
        return len(self.sound_files)

    def __getitem__(self, idx):
        # Get the sound file path
        sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1]

Code Implementation

The input pipeline must be provided by the user. Please refer to ``code/0-input/input_feature.py`` for having an idea about how the input pipeline works.

Input Pipeline for this work

readme_images/Speech_GIF.gif

The MFCC features can be used as the data representation of the spoken utterances at the frame level. However, a drawback is their non-local characteristics due to the last DCT 1 operation for generating MFCCs. This operation disturbs the locality property and is in contrast with the local characteristics of the convolutional operations. The employed approach in this work is to use the log-energies, which we call MFECs. The extraction of MFECs is similar to MFCCs by discarding the DCT operation. The temporal features are overlapping 20ms windows with the stride of 10ms, which are used for the generation of spectrum features. From a 0.8- second sound sample, 80 temporal feature sets (each forms a 40 MFEC features) can be obtained which form the input speech feature map. Each input feature map has the dimen- sionality of ζ × 80 × 40 which is formed from 80 input frames and their corresponding spectral features, where ζ is the number of utterances used in modeling the speaker during the development and enrollment stages.

The speech features have been extracted using [SpeechPy] package.

Implementation of 3D Convolutional Operation

The following script has been used for our implementation:

self.conv11 = nn.Conv3d(1, 16, (4, 9, 9), stride=(1, 2, 1))
self.conv11_bn = nn.BatchNorm3d(16)
self.conv11_activation = torch.nn.PReLU()
self.conv12 = nn.Conv3d(16, 16, (4, 9, 9), stride=(1, 1, 1))
self.conv12_bn = nn.BatchNorm3d(16)
self.conv12_activation = torch.nn.PReLU()
self.conv21 = nn.Conv3d(16, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv21_bn = nn.BatchNorm3d(32)
self.conv21_activation = torch.nn.PReLU()
self.conv22 = nn.Conv3d(32, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv22_bn = nn.BatchNorm3d(32)
self.conv22_activation = torch.nn.PReLU()
self.conv31 = nn.Conv3d(32, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv31_bn = nn.BatchNorm3d(64)
self.conv31_activation = torch.nn.PReLU()
self.conv32 = nn.Conv3d(64, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv32_bn = nn.BatchNorm3d(64)
self.conv32_activation = torch.nn.PReLU()
self.conv41 = nn.Conv3d(64, 128, (3, 3, 3), stride=(1, 1, 1))
self.conv41_bn = nn.BatchNorm3d(128)
self.conv41_activation = torch.nn.PReLU()

As it can be seen, slim.conv2d has been used. However, simply by using 3D kernels as [k_x, k_y, k_z] and stride=[a, b, c] it can be turned into a 3D-conv operation. The base of the slim.conv2d is tf.contrib.layers.conv2d. Please refer to official Documentation for further details.

License

The license is as follows:

APPENDIX: How to apply the Apache License to your work.

   To apply the Apache License to your work, attach the following
   boilerplate notice, with the fields enclosed by brackets "{}"
   replaced with your own identifying information. (Don't include the brackets!)  The text should be enclosed in the appropriate
   comment syntax for the file format. We also recommend that a
   file or class name and description of purpose be included on the
   same "printed page" as the copyright notice for easier
   identification within third-party archives.

Copyright {2017} {Amirsina Torfi}

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Please refer to LICENSE file for further detail.

Contribution

We are looking forward to your kind feedback. Please help us to improve the code and make our work better. For contribution, please create the pull request and we will investigate it promptly. Once again, we appreciate your feedback and code inspections.

references

[SpeechPy] Amirsina Torfi. 2017. astorfi/speech_feature_extraction: SpeechPy. Zenodo. doi:10.5281/zenodo.810392.
Owner
Amirsina Torfi
PhD & Developer working on Deep Learning, Computer Vision & NLP
Amirsina Torfi
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022