Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

Overview
alternate text

3D Convolutional Neural Networks for Speaker Verification - Official Project Page

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.svg?v=102 https://img.shields.io/twitter/follow/amirsinatorfi.svg?label=Follow&style=social

Table of Contents

This repository contains the Pytorch code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well.

The code has been developed using Pytorch. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

readme_images/conv_gif.gif

Citation

If you used this code, please kindly consider citing the following paper:

@article{torfi2017text,
  title={Text-independent speaker verification using 3d convolutional neural networks},
  author={Torfi, Amirsina and Nasrabadi, Nasser M and Dawson, Jeremy},
  journal={arXiv preprint arXiv:1705.09422},
  year={2017}
}

General View

We leveraged 3D convolutional architecture for creating the speaker model in order to simultaneously capturing the speech-related and temporal information from the speakers' utterances.

Speaker Verification Protocol(SVP)

In this work, a 3D Convolutional Neural Network (3D-CNN) architecture has been utilized for text-independent speaker verification in three phases.

1. At the development phase, a CNN is trained to classify speakers at the utterance-level.

2. In the enrollment stage, the trained network is utilized to directly create a speaker model for each speaker based on the extracted features.

3. Finally, in the evaluation phase, the extracted features from the test utterance will be compared to the stored speaker model to verify the claimed identity.

The aforementioned three phases are usually considered as the SV protocol. One of the main challenges is the creation of the speaker models. Previously-reported approaches create speaker models based on averaging the extracted features from utterances of the speaker, which is known as the d-vector system.

How to leverage 3D Convolutional Neural Networks?

In our paper, we propose the implementation of 3D-CNNs for direct speaker model creation in which, for both development and enrollment phases, an identical number of speaker utterances is fed to the network for representing the spoken utterances and creation of the speaker model. This leads to simultaneously capturing the speaker-related information and building a more robust system to cope with within-speaker variation. We demonstrate that the proposed method significantly outperforms the d-vector verification system.

Dataset

Unlike the Original Implementaion, here we used the VoxCeleb publicy available dataset. The dataset contains annotated audio files. For Speaker Verification, the parts of the audio associated with the subject of interest, however, must be extracted from the raw audio files.

Three steps should be taken to prepare the data after downloading the data associated files.

  1. Extract the specific audio part that the subject of interest is speaking.[extract_audio.py]
  2. Create train/test phase.[create_phases.py]
  3. Voice Activity Detection to remove the silence. [vad.py]

Creating the dataset object, necessary preprocessing and feature extraction will be performed in the following data class:

1000, "Bad file!" # Add to list if file is OK! list_files.append(x.strip()) except: print('file %s is corrupted!' % sound_file_path) # Save the correct and healthy sound files to a list. self.sound_files = list_files def __len__(self): return len(self.sound_files) def __getitem__(self, idx): # Get the sound file path sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1] ">
class AudioDataset():
"""Audio dataset."""

    def __init__(self, files_path, audio_dir, transform=None):
        """
        Args:
            files_path (string): Path to the .txt file which the address of files are saved in it.
            root_dir (string): Directory with all the audio files.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """

        # self.sound_files = [x.strip() for x in content]
        self.audio_dir = audio_dir
        self.transform = transform

        # Open the .txt file and create a list from each line.
        with open(files_path, 'r') as f:
            content = f.readlines()
        # you may also want to remove whitespace characters like `\n` at the end of each line
        list_files = []
        for x in content:
            sound_file_path = os.path.join(self.audio_dir, x.strip().split()[1])
            try:
                with open(sound_file_path, 'rb') as f:
                    riff_size, _ = wav._read_riff_chunk(f)
                    file_size = os.path.getsize(sound_file_path)

                # Assertion error.
                assert riff_size == file_size and os.path.getsize(sound_file_path) > 1000, "Bad file!"

                # Add to list if file is OK!
                list_files.append(x.strip())
            except:
                print('file %s is corrupted!' % sound_file_path)

        # Save the correct and healthy sound files to a list.
        self.sound_files = list_files

    def __len__(self):
        return len(self.sound_files)

    def __getitem__(self, idx):
        # Get the sound file path
        sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1]

Code Implementation

The input pipeline must be provided by the user. Please refer to ``code/0-input/input_feature.py`` for having an idea about how the input pipeline works.

Input Pipeline for this work

readme_images/Speech_GIF.gif

The MFCC features can be used as the data representation of the spoken utterances at the frame level. However, a drawback is their non-local characteristics due to the last DCT 1 operation for generating MFCCs. This operation disturbs the locality property and is in contrast with the local characteristics of the convolutional operations. The employed approach in this work is to use the log-energies, which we call MFECs. The extraction of MFECs is similar to MFCCs by discarding the DCT operation. The temporal features are overlapping 20ms windows with the stride of 10ms, which are used for the generation of spectrum features. From a 0.8- second sound sample, 80 temporal feature sets (each forms a 40 MFEC features) can be obtained which form the input speech feature map. Each input feature map has the dimen- sionality of ζ × 80 × 40 which is formed from 80 input frames and their corresponding spectral features, where ζ is the number of utterances used in modeling the speaker during the development and enrollment stages.

The speech features have been extracted using [SpeechPy] package.

Implementation of 3D Convolutional Operation

The following script has been used for our implementation:

self.conv11 = nn.Conv3d(1, 16, (4, 9, 9), stride=(1, 2, 1))
self.conv11_bn = nn.BatchNorm3d(16)
self.conv11_activation = torch.nn.PReLU()
self.conv12 = nn.Conv3d(16, 16, (4, 9, 9), stride=(1, 1, 1))
self.conv12_bn = nn.BatchNorm3d(16)
self.conv12_activation = torch.nn.PReLU()
self.conv21 = nn.Conv3d(16, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv21_bn = nn.BatchNorm3d(32)
self.conv21_activation = torch.nn.PReLU()
self.conv22 = nn.Conv3d(32, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv22_bn = nn.BatchNorm3d(32)
self.conv22_activation = torch.nn.PReLU()
self.conv31 = nn.Conv3d(32, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv31_bn = nn.BatchNorm3d(64)
self.conv31_activation = torch.nn.PReLU()
self.conv32 = nn.Conv3d(64, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv32_bn = nn.BatchNorm3d(64)
self.conv32_activation = torch.nn.PReLU()
self.conv41 = nn.Conv3d(64, 128, (3, 3, 3), stride=(1, 1, 1))
self.conv41_bn = nn.BatchNorm3d(128)
self.conv41_activation = torch.nn.PReLU()

As it can be seen, slim.conv2d has been used. However, simply by using 3D kernels as [k_x, k_y, k_z] and stride=[a, b, c] it can be turned into a 3D-conv operation. The base of the slim.conv2d is tf.contrib.layers.conv2d. Please refer to official Documentation for further details.

License

The license is as follows:

APPENDIX: How to apply the Apache License to your work.

   To apply the Apache License to your work, attach the following
   boilerplate notice, with the fields enclosed by brackets "{}"
   replaced with your own identifying information. (Don't include the brackets!)  The text should be enclosed in the appropriate
   comment syntax for the file format. We also recommend that a
   file or class name and description of purpose be included on the
   same "printed page" as the copyright notice for easier
   identification within third-party archives.

Copyright {2017} {Amirsina Torfi}

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Please refer to LICENSE file for further detail.

Contribution

We are looking forward to your kind feedback. Please help us to improve the code and make our work better. For contribution, please create the pull request and we will investigate it promptly. Once again, we appreciate your feedback and code inspections.

references

[SpeechPy] Amirsina Torfi. 2017. astorfi/speech_feature_extraction: SpeechPy. Zenodo. doi:10.5281/zenodo.810392.
Owner
Amirsina Torfi
PhD & Developer working on Deep Learning, Computer Vision & NLP
Amirsina Torfi
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021