Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

Overview
alternate text

3D Convolutional Neural Networks for Speaker Verification - Official Project Page

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.svg?v=102 https://img.shields.io/twitter/follow/amirsinatorfi.svg?label=Follow&style=social

Table of Contents

This repository contains the Pytorch code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well.

The code has been developed using Pytorch. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

readme_images/conv_gif.gif

Citation

If you used this code, please kindly consider citing the following paper:

@article{torfi2017text,
  title={Text-independent speaker verification using 3d convolutional neural networks},
  author={Torfi, Amirsina and Nasrabadi, Nasser M and Dawson, Jeremy},
  journal={arXiv preprint arXiv:1705.09422},
  year={2017}
}

General View

We leveraged 3D convolutional architecture for creating the speaker model in order to simultaneously capturing the speech-related and temporal information from the speakers' utterances.

Speaker Verification Protocol(SVP)

In this work, a 3D Convolutional Neural Network (3D-CNN) architecture has been utilized for text-independent speaker verification in three phases.

1. At the development phase, a CNN is trained to classify speakers at the utterance-level.

2. In the enrollment stage, the trained network is utilized to directly create a speaker model for each speaker based on the extracted features.

3. Finally, in the evaluation phase, the extracted features from the test utterance will be compared to the stored speaker model to verify the claimed identity.

The aforementioned three phases are usually considered as the SV protocol. One of the main challenges is the creation of the speaker models. Previously-reported approaches create speaker models based on averaging the extracted features from utterances of the speaker, which is known as the d-vector system.

How to leverage 3D Convolutional Neural Networks?

In our paper, we propose the implementation of 3D-CNNs for direct speaker model creation in which, for both development and enrollment phases, an identical number of speaker utterances is fed to the network for representing the spoken utterances and creation of the speaker model. This leads to simultaneously capturing the speaker-related information and building a more robust system to cope with within-speaker variation. We demonstrate that the proposed method significantly outperforms the d-vector verification system.

Dataset

Unlike the Original Implementaion, here we used the VoxCeleb publicy available dataset. The dataset contains annotated audio files. For Speaker Verification, the parts of the audio associated with the subject of interest, however, must be extracted from the raw audio files.

Three steps should be taken to prepare the data after downloading the data associated files.

  1. Extract the specific audio part that the subject of interest is speaking.[extract_audio.py]
  2. Create train/test phase.[create_phases.py]
  3. Voice Activity Detection to remove the silence. [vad.py]

Creating the dataset object, necessary preprocessing and feature extraction will be performed in the following data class:

1000, "Bad file!" # Add to list if file is OK! list_files.append(x.strip()) except: print('file %s is corrupted!' % sound_file_path) # Save the correct and healthy sound files to a list. self.sound_files = list_files def __len__(self): return len(self.sound_files) def __getitem__(self, idx): # Get the sound file path sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1] ">
class AudioDataset():
"""Audio dataset."""

    def __init__(self, files_path, audio_dir, transform=None):
        """
        Args:
            files_path (string): Path to the .txt file which the address of files are saved in it.
            root_dir (string): Directory with all the audio files.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """

        # self.sound_files = [x.strip() for x in content]
        self.audio_dir = audio_dir
        self.transform = transform

        # Open the .txt file and create a list from each line.
        with open(files_path, 'r') as f:
            content = f.readlines()
        # you may also want to remove whitespace characters like `\n` at the end of each line
        list_files = []
        for x in content:
            sound_file_path = os.path.join(self.audio_dir, x.strip().split()[1])
            try:
                with open(sound_file_path, 'rb') as f:
                    riff_size, _ = wav._read_riff_chunk(f)
                    file_size = os.path.getsize(sound_file_path)

                # Assertion error.
                assert riff_size == file_size and os.path.getsize(sound_file_path) > 1000, "Bad file!"

                # Add to list if file is OK!
                list_files.append(x.strip())
            except:
                print('file %s is corrupted!' % sound_file_path)

        # Save the correct and healthy sound files to a list.
        self.sound_files = list_files

    def __len__(self):
        return len(self.sound_files)

    def __getitem__(self, idx):
        # Get the sound file path
        sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1]

Code Implementation

The input pipeline must be provided by the user. Please refer to ``code/0-input/input_feature.py`` for having an idea about how the input pipeline works.

Input Pipeline for this work

readme_images/Speech_GIF.gif

The MFCC features can be used as the data representation of the spoken utterances at the frame level. However, a drawback is their non-local characteristics due to the last DCT 1 operation for generating MFCCs. This operation disturbs the locality property and is in contrast with the local characteristics of the convolutional operations. The employed approach in this work is to use the log-energies, which we call MFECs. The extraction of MFECs is similar to MFCCs by discarding the DCT operation. The temporal features are overlapping 20ms windows with the stride of 10ms, which are used for the generation of spectrum features. From a 0.8- second sound sample, 80 temporal feature sets (each forms a 40 MFEC features) can be obtained which form the input speech feature map. Each input feature map has the dimen- sionality of ζ × 80 × 40 which is formed from 80 input frames and their corresponding spectral features, where ζ is the number of utterances used in modeling the speaker during the development and enrollment stages.

The speech features have been extracted using [SpeechPy] package.

Implementation of 3D Convolutional Operation

The following script has been used for our implementation:

self.conv11 = nn.Conv3d(1, 16, (4, 9, 9), stride=(1, 2, 1))
self.conv11_bn = nn.BatchNorm3d(16)
self.conv11_activation = torch.nn.PReLU()
self.conv12 = nn.Conv3d(16, 16, (4, 9, 9), stride=(1, 1, 1))
self.conv12_bn = nn.BatchNorm3d(16)
self.conv12_activation = torch.nn.PReLU()
self.conv21 = nn.Conv3d(16, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv21_bn = nn.BatchNorm3d(32)
self.conv21_activation = torch.nn.PReLU()
self.conv22 = nn.Conv3d(32, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv22_bn = nn.BatchNorm3d(32)
self.conv22_activation = torch.nn.PReLU()
self.conv31 = nn.Conv3d(32, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv31_bn = nn.BatchNorm3d(64)
self.conv31_activation = torch.nn.PReLU()
self.conv32 = nn.Conv3d(64, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv32_bn = nn.BatchNorm3d(64)
self.conv32_activation = torch.nn.PReLU()
self.conv41 = nn.Conv3d(64, 128, (3, 3, 3), stride=(1, 1, 1))
self.conv41_bn = nn.BatchNorm3d(128)
self.conv41_activation = torch.nn.PReLU()

As it can be seen, slim.conv2d has been used. However, simply by using 3D kernels as [k_x, k_y, k_z] and stride=[a, b, c] it can be turned into a 3D-conv operation. The base of the slim.conv2d is tf.contrib.layers.conv2d. Please refer to official Documentation for further details.

License

The license is as follows:

APPENDIX: How to apply the Apache License to your work.

   To apply the Apache License to your work, attach the following
   boilerplate notice, with the fields enclosed by brackets "{}"
   replaced with your own identifying information. (Don't include the brackets!)  The text should be enclosed in the appropriate
   comment syntax for the file format. We also recommend that a
   file or class name and description of purpose be included on the
   same "printed page" as the copyright notice for easier
   identification within third-party archives.

Copyright {2017} {Amirsina Torfi}

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Please refer to LICENSE file for further detail.

Contribution

We are looking forward to your kind feedback. Please help us to improve the code and make our work better. For contribution, please create the pull request and we will investigate it promptly. Once again, we appreciate your feedback and code inspections.

references

[SpeechPy] Amirsina Torfi. 2017. astorfi/speech_feature_extraction: SpeechPy. Zenodo. doi:10.5281/zenodo.810392.
Owner
Amirsina Torfi
PhD & Developer working on Deep Learning, Computer Vision & NLP
Amirsina Torfi
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023