An AFL implementation with UnTracer (our coverage-guided tracer)

Overview

UnTracer-AFL

This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuzzer AFL. Coverage-guided tracing employs two versions of the target binary: (1) a forkserver-only oracle binary modified with basic block-level software interrupts on unseen basic blocks for quickly identifying coverage-increasing testcases and (2) a fully-instrumented tracer binary for tracing the coverage of all coverage-increasing testcases.

In UnTracer, both the oracle and tracer binaries use the AFL-inspired forkserver execution model. For oracle instrumentation we require all target binaries be compiled with untracer-cc -- our "forkserver-only" modification of AFL's assembly-time instrumenter afl-cc. For tracer binary instrumentation we utilize Dyninst with much of our code based-off AFL-Dyninst. We plan to incorporate a purely binary-only ("black-box") instrumentation approach in the near future. Our current implementation of UnTracer supports basic block coverage.

Presented in our paper Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided Tracing
(2019 IEEE Symposium on Security and Privacy).
Citing this repository: @inproceedings{nagy:fullspeedfuzzing,
title = {Full-speed Fuzzing: Reducing Fuzzing Overhead through Coverage-guided Tracing},
author = {Stefan Nagy and Matthew Hicks},
booktitle = {{IEEE} Symposium on Security and Privacy (Oakland)},
year = {2019},}
Developers: Stefan Nagy ([email protected]) and Matthew Hicks ([email protected])
License: MIT License
Disclaimer: This software is strictly a research prototype.

INSTALLATION

1. Download and build Dyninst (we used v9.3.2)

sudo apt-get install cmake m4 zlib1g-dev libboost-all-dev libiberty-dev
wget https://github.com/dyninst/dyninst/archive/v9.3.2.tar.gz
tar -xf v9.3.2.tar.gz dyninst-9.3.2/
mkdir dynBuildDir
cd dynBuildDir
cmake ../dyninst-9.3.2/ -DCMAKE_INSTALL_PREFIX=`pwd`
make
make install

2. Download UnTracer-AFL (this repo)

git clone https://github.com/FoRTE-Research/UnTracer-AFL

3. Configure environment variables

export DYNINST_INSTALL=/path/to/dynBuildDir
export UNTRACER_AFL_PATH=/path/to/Untracer-AFL

export DYNINSTAPI_RT_LIB=$DYNINST_INSTALL/lib/libdyninstAPI_RT.so
export LD_LIBRARY_PATH=$DYNINST_INSTALL/lib:$UNTRACER_AFL_PATH
export PATH=$PATH:$UNTRACER_AFL_PATH

4. Build UnTracer-AFL

Update DYN_ROOT in UnTracer-AFL/Makefile to your Dyninst install directory. Then, run the following commands:

make clean && make all

USAGE

First, compile all target binaries using "forkserver-only" instrumentation. As with AFL, you will need to manually set the C compiler (untracer-clang or untracer-gcc) and/or C++ compiler (untracer-clang++ or untracer-g++). Note that only non-position-independent target binaries are supported, so compile all target binaries with CFLAG -no-pie (unnecessary for Clang). For example:

NOTE: We provide a set of fuzzing-ready benchmarks available here: https://github.com/FoRTE-Research/FoRTE-FuzzBench.

$ CC=/path/to/afl/untracer-clang ./configure --disable-shared
$ CXX=/path/to/afl/untracer-clang++.
$ make clean all
Instrumenting in forkserver-only mode...

Then, run untracer-afl as follows:

untracer-afl -i [/path/to/seed/dir] -o [/path/to/out/dir] [optional_args] -- [/path/to/target] [target_args]

Status Screen

  • calib execs and trim execs - Number of testcase calibration and trimming executions, respectively. Tracing is done for both.
  • block coverage - Percentage of total blocks found (left) and the number of total blocks (right).
  • traced / queued - Ratio of traced versus queued testcases. This ratio should (ideally) be 1:1 but will increase as trace timeouts occur.
  • trace tmouts (discarded) - Number of testcases which timed out during tracing. Like AFL, we do not queue these.
  • no new bits (discarded) - Number of testcases which were marked coverage-increasing by the oracle but did not actually increase coverage. This should (ideally) be 0.

Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022