CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

Overview

CharacterGAN

Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wang, Eli Shechtman, and Stefan Wermter (open with Adobe Acrobat or similar to see visualizations).

Supplementary material can be found here.

Our model can be trained on only a few images (e.g. 10) of a given character labeled with user-chosen keypoints. The resulting model can be used to animate the character on which it was trained by interpolating between its poses specified by their keypoints. We can also repose characters by simply moving the keypoints into the desired positions. To train the model all we need are few images depicting the character in diverse poses from the same viewpoint, keypoints, a file that describes how the keypoints are connected (the characters skeleton) and which keypoints lie in the same layer.

Examples

Animation: For all examples the model was trained on 8-15 images (see first row) of the given character.

Training Images 12 15 9 12 15 15 8
Animation dog_animation maddy_animation ostrich_animation man_animation robot_animation man_animation cow_animation



Frame interpolation: Example of interpolations between two poses with the start and end keypoints highlighted.

man man man man man man man man man man man man man
dog dog dog dog dog dog dog dog dog dog dog dog dog



Reposing: You can use our interactive GUI to easily repose a given character based on keypoints.

Interactive dog_gui man_gui
Gui cow_gui man_gui

Installation

  • python 3.8
  • pytorch 1.7.1
pip install -r requirements.txt

Training

Training Data

All training data for a given character should be in a single folder. We used this website to label our images but there are of course other possibilities.

The folder should contain:

  • all training images (all in the same resolution),
  • a file called keypoints.csv (containing the keypoints for each image),
  • a file called keypoints_skeleton.csv (containing skeleton information, i.e. how keypoints are connected with each other), and
  • a file called keypoints_layers.csv (containing the information about which layer each keypoint resides in).

The structure of the keypoints.csv file is (no header): keypoint_label,x_coord,y_coord,file_name. The first column describes the keypoint label (e.g. head), the next two columns give the location of the keypoint, and the final column states which training image this keypoint belongs to.

The structure of the keypoints_skeleton.csv file is (no header): keypoint,connected_keypoint,connected_keypoint,.... The first column describes which keypoint we are describing in this line, the following columns describe which keypoints are connected to that keypoint (e.g. elbow, shoulder, hand would state that the elbow keypoint should be connected to the shoulder keypoint and the hand keypoint).

The structure of the keypoints_layers.csv file is (no header): keypoint,layer. "Keypoint" is the keypoint label (same as used in the previous two files) and "layer" is an integer value desribing which layer the keypoint resides in.

See our example training data in datasets for examples of both files.

We provide two examples (produced by Zuzana Studená) for training, located in datasets. Our other examples were trained on data from Adobe Stock or from Character Animator and I currently have no license to distribute them. You can purchase the Stock data here:

  • Man: we used all images
  • Dog: we used all images
  • Ostrich: we used the first nine images
  • Cow: we used the first eight images

There are also several websites where you can download Sprite sheets for free.

Train a Model

To train a model with the default parameters from our paper run:

python train.py --gpu_ids 0 --num_keypoints 14 --dataroot datasets/Watercolor-Man --fp16 --name Watercolor-Man

Training one model should take about 60 (FP16) to 90 (FP32) minutes on an NVIDIA GeForce GTX 2080Ti. You can usually use fewer iterations for training and still achieve good results (see next section).

Training Parameters

You can adjust several parameters at train time to possibly improve your results.

  • --name to change the name of the folder in which the results are stored (default is CharacterGAN-Timestamp)
  • --niter 4000 and --niter_decay 4000 to adjust the number of training steps (niter_decayis the number of training steps during which we reduce the learning rate linearly; default is 8000 for both, but you can get good results with fewer iterations)
  • --mask True --output_nc 4 to train with a mask
  • --skeleton False to train without skeleton information
  • --bkg_color 0 to set the background color of the training images to black (default is white, only important if you train with a mask)
  • --batch_size 10 to train with a different batch size (default is 5)

The file options/keypoints.py lets you modify/add/remove keypoints for your characters.

Results

The output is saved to checkpoints/ and we log the training process with Tensorboard. To monitor the progress go to the respective folder and run

 tensorboard --logdir .

Testing

At test time you can either use the model to animate the character or use our interactive GUI to change the position of individual keypoints.

Animate Character

To animate a character (or create interpolations between two images):

python animate_example.py --gpu_ids 0 --model_path checkpoints/Watercolor-Man-.../ --img_animation_list datasets/Watercolor-Man/animation_list.txt --dataroot datasets/Watercolor-Man

--img_animation_list points to a file that lists the images that should be used for animation. The file should contain one file name per line pointing to an image in dataroot. The model then generates an animation by interpolating between the images in the given order. See datasets/Watercolor-Man/animation_list.txt for an example.

You can add --draw_kps to visualize the keypoints in the animation. You can specifiy the gif parameters by setting --num_interpolations 10 and --fps 5. num_interpolations specifies how many images are generated between two real images (from img_animation_list), fps determines the frames per second of the generated gif.

Modify Individual Keypoints

To run the interactive GUI:

python visualizer.py --gpu_ids 0 --model_path checkpoints/Watercolor-Man-.../

Set --gpu_ids -1 to run the model on a CPU. You can also scale the images during visualization, e.g. use --scale 2.

Patch-based Refinement

We use this implementation to run the patch-based refinement step on our generated images. The easiest way to do this is to merge all your training images into a single large image file and use this image file as the style and source image.

Acknowledgements

Our implementation uses code from Pix2PixHD, the TPS augmentation from DeepSIM, and the patch-based refinement code from https://ebsynth.com/ (GitHub).

We would also like to thank Zuzana Studená who produced some of the artwork used in this work.

Citation

If you found this code useful please consider citing:

@article{hinz2021character,
    author    = {Hinz, Tobias and Fisher, Matthew and Wang, Oliver and Shechtman, Eli and Wermter, Stefan},
    title     = {CharacterGAN: Few-Shot Keypoint Character Animation and Reposing},
    journal = {arXiv preprint arXiv:2102.03141},
    year      = {2021}
}
Owner
Tobias Hinz
Research Associate at University of Hamburg
Tobias Hinz
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network

KaGRMN-DSG_ABSA This repository contains the PyTorch source Code for our paper: Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated

XingBowen 4 May 20, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022