CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

Overview

CharacterGAN

Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wang, Eli Shechtman, and Stefan Wermter (open with Adobe Acrobat or similar to see visualizations).

Supplementary material can be found here.

Our model can be trained on only a few images (e.g. 10) of a given character labeled with user-chosen keypoints. The resulting model can be used to animate the character on which it was trained by interpolating between its poses specified by their keypoints. We can also repose characters by simply moving the keypoints into the desired positions. To train the model all we need are few images depicting the character in diverse poses from the same viewpoint, keypoints, a file that describes how the keypoints are connected (the characters skeleton) and which keypoints lie in the same layer.

Examples

Animation: For all examples the model was trained on 8-15 images (see first row) of the given character.

Training Images 12 15 9 12 15 15 8
Animation dog_animation maddy_animation ostrich_animation man_animation robot_animation man_animation cow_animation



Frame interpolation: Example of interpolations between two poses with the start and end keypoints highlighted.

man man man man man man man man man man man man man
dog dog dog dog dog dog dog dog dog dog dog dog dog



Reposing: You can use our interactive GUI to easily repose a given character based on keypoints.

Interactive dog_gui man_gui
Gui cow_gui man_gui

Installation

  • python 3.8
  • pytorch 1.7.1
pip install -r requirements.txt

Training

Training Data

All training data for a given character should be in a single folder. We used this website to label our images but there are of course other possibilities.

The folder should contain:

  • all training images (all in the same resolution),
  • a file called keypoints.csv (containing the keypoints for each image),
  • a file called keypoints_skeleton.csv (containing skeleton information, i.e. how keypoints are connected with each other), and
  • a file called keypoints_layers.csv (containing the information about which layer each keypoint resides in).

The structure of the keypoints.csv file is (no header): keypoint_label,x_coord,y_coord,file_name. The first column describes the keypoint label (e.g. head), the next two columns give the location of the keypoint, and the final column states which training image this keypoint belongs to.

The structure of the keypoints_skeleton.csv file is (no header): keypoint,connected_keypoint,connected_keypoint,.... The first column describes which keypoint we are describing in this line, the following columns describe which keypoints are connected to that keypoint (e.g. elbow, shoulder, hand would state that the elbow keypoint should be connected to the shoulder keypoint and the hand keypoint).

The structure of the keypoints_layers.csv file is (no header): keypoint,layer. "Keypoint" is the keypoint label (same as used in the previous two files) and "layer" is an integer value desribing which layer the keypoint resides in.

See our example training data in datasets for examples of both files.

We provide two examples (produced by Zuzana Studená) for training, located in datasets. Our other examples were trained on data from Adobe Stock or from Character Animator and I currently have no license to distribute them. You can purchase the Stock data here:

  • Man: we used all images
  • Dog: we used all images
  • Ostrich: we used the first nine images
  • Cow: we used the first eight images

There are also several websites where you can download Sprite sheets for free.

Train a Model

To train a model with the default parameters from our paper run:

python train.py --gpu_ids 0 --num_keypoints 14 --dataroot datasets/Watercolor-Man --fp16 --name Watercolor-Man

Training one model should take about 60 (FP16) to 90 (FP32) minutes on an NVIDIA GeForce GTX 2080Ti. You can usually use fewer iterations for training and still achieve good results (see next section).

Training Parameters

You can adjust several parameters at train time to possibly improve your results.

  • --name to change the name of the folder in which the results are stored (default is CharacterGAN-Timestamp)
  • --niter 4000 and --niter_decay 4000 to adjust the number of training steps (niter_decayis the number of training steps during which we reduce the learning rate linearly; default is 8000 for both, but you can get good results with fewer iterations)
  • --mask True --output_nc 4 to train with a mask
  • --skeleton False to train without skeleton information
  • --bkg_color 0 to set the background color of the training images to black (default is white, only important if you train with a mask)
  • --batch_size 10 to train with a different batch size (default is 5)

The file options/keypoints.py lets you modify/add/remove keypoints for your characters.

Results

The output is saved to checkpoints/ and we log the training process with Tensorboard. To monitor the progress go to the respective folder and run

 tensorboard --logdir .

Testing

At test time you can either use the model to animate the character or use our interactive GUI to change the position of individual keypoints.

Animate Character

To animate a character (or create interpolations between two images):

python animate_example.py --gpu_ids 0 --model_path checkpoints/Watercolor-Man-.../ --img_animation_list datasets/Watercolor-Man/animation_list.txt --dataroot datasets/Watercolor-Man

--img_animation_list points to a file that lists the images that should be used for animation. The file should contain one file name per line pointing to an image in dataroot. The model then generates an animation by interpolating between the images in the given order. See datasets/Watercolor-Man/animation_list.txt for an example.

You can add --draw_kps to visualize the keypoints in the animation. You can specifiy the gif parameters by setting --num_interpolations 10 and --fps 5. num_interpolations specifies how many images are generated between two real images (from img_animation_list), fps determines the frames per second of the generated gif.

Modify Individual Keypoints

To run the interactive GUI:

python visualizer.py --gpu_ids 0 --model_path checkpoints/Watercolor-Man-.../

Set --gpu_ids -1 to run the model on a CPU. You can also scale the images during visualization, e.g. use --scale 2.

Patch-based Refinement

We use this implementation to run the patch-based refinement step on our generated images. The easiest way to do this is to merge all your training images into a single large image file and use this image file as the style and source image.

Acknowledgements

Our implementation uses code from Pix2PixHD, the TPS augmentation from DeepSIM, and the patch-based refinement code from https://ebsynth.com/ (GitHub).

We would also like to thank Zuzana Studená who produced some of the artwork used in this work.

Citation

If you found this code useful please consider citing:

@article{hinz2021character,
    author    = {Hinz, Tobias and Fisher, Matthew and Wang, Oliver and Shechtman, Eli and Wermter, Stefan},
    title     = {CharacterGAN: Few-Shot Keypoint Character Animation and Reposing},
    journal = {arXiv preprint arXiv:2102.03141},
    year      = {2021}
}
Owner
Tobias Hinz
Research Associate at University of Hamburg
Tobias Hinz
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022