Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

Overview

LADA

This repo contains codes for the following paper:

Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augmentation for Semi-supervised NER. In Proceedings of The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP'2020)

If you would like to refer to it, please cite the paper mentioned above.

Getting Started

These instructions will get you running the codes of LADA.

Requirements

  • Python 3.6 or higher
  • Pytorch >= 1.4.0
  • Pytorch_transformers (also known as transformers)
  • Pandas, Numpy, Pickle, faiss, sentence-transformers

Code Structure

├── code/
│   ├── BERT/
│   │   ├── back_translate.ipynb --> Jupyter Notebook for back translating the dataset
│   │   ├── bert_models.py --> Codes for LADA-based BERT models
│   │   ├── eval_utils.py --> Codes for evaluations
│   │   ├── knn.ipynb --> Jupyter Notebook for building the knn index file
│   │   ├── read_data.py --> Codes for data pre-processing
│   │   ├── train.py --> Codes for trianing BERT model
│   │   └── ...
│   ├── flair/
│   │   ├── train.py --> Codes for trianing flair model
│   │   ├── knn.ipynb --> Jupyter Notebook for building the knn index file
│   │   ├── flair/ --> the flair library
│   │   │   └── ...
│   │   ├── resources/
│   │   │   ├── docs/ --> flair library docs
│   │   │   ├── taggers/ --> save evaluation results for flair model
│   │   │   └── tasks/
│   │   │       └── conll_03/
│   │   │           ├── sent_id_knn_749.pkl --> knn index file
│   │   │           └── ... -> CoNLL-2003 dataset
│   │   └── ...
├── data/
│   └── conll2003/
│       ├── de.pkl -->Back translated training dataset with German as middle language
│       ├── labels.txt --> label index file
│       ├── sent_id_knn_700.pkl
│       └── ...  -> CoNLL-2003 dataset
├── eval/
│   └── conll2003/ --> save evaluation results for BERT model
└── README.md

BERT models

Downloading the data

Please download the CoNLL-2003 dataset and save under ./data/conll2003/ as train.txt, dev.txt, and test.txt.

Pre-processing the data

We utilize Fairseq to perform back translation on the training dataset. Please refer to ./code/BERT/back_translate.ipynb for details.

Here, we have put one example of back translated data, de.pkl, in ./data/conll2003/ . You can directly use it for CoNLL-2003 or generate your own back translated data following ./code/BERT/back_translate.ipynb.

We also provide the kNN index file for the first 700 training sentences (5%) ./data/conll2003/sent_id_knn_700.pkl. You can directly use it for CoNLL-2003 or generate your own kNN index file following ./code/BERT/knn.ipynb

Training models

These section contains instructions for training models on CoNLL-2003 using 5% training data.

Training BERT+Intra-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio 1 

Training BERT+Inter-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \ 
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \ 
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio -1  

Training BERT+Semi-Intra-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio 1 \
--u-batch-size 32 --semi --T 0.6 --sharp --weight 0.05 --semi-pkl-file 'de.pkl' \
--semi-num 10000 --semi-loss 'mse' --ignore-last-n-label 4  --warmup-semi --num-semi-iter 1 \
--semi-loss-method 'origin' 

Training BERT+Semi-Inter-LADA model

python ./code/BERT/train.py --data-dir 'data/conll2003' --model-type 'bert' \
--model-name 'bert-base-multilingual-cased' --output-dir 'eval/conll2003' --gpu '0,1' \
--labels 'data/conll2003/labels.txt' --max-seq-length 164 --overwrite-output-dir \
--do-train --do-eval --do-predict --evaluate-during-training --batch-size 16 \
--num-train-epochs 20 --save-steps 750 --seed 1 --train-examples 700  --eval-batch-size 128 \ 
--pad-subtoken-with-real-label --eval-pad-subtoken-with-first-subtoken-only --label-sep-cls \
--mix-layers-set 8 9 10  --beta 1.5 --alpha 60  --mix-option --use-knn-train-data \
--num-knn-k 5 --knn-mix-ratio 0.5 --intra-mix-ratio -1 \
--u-batch-size 32 --semi --T 0.6 --sharp --weight 0.05 --semi-pkl-file 'de.pkl' \
--semi-num 10000 --semi-loss 'mse' --ignore-last-n-label 4  --warmup-semi --num-semi-iter 1 \
--semi-loss-method 'origin' 

flair models

flair is a BiLSTM-CRF sequence labeling model, and we provide code for flair+Inter-LADA

Downloading the data

Please download the CoNLL-2003 dataset and save under ./code/flair/resources/tasks/conll_03/ as eng.train, eng.testa (dev), and eng.testb (test).

Pre-processing the data

We also provide the kNN index file for the first 749 training sentences (5%, including the -DOCSTART- seperator) ./code/flair/resources/tasks/conll_03/sent_id_knn_749.pkl. You can directly use it for CoNLL-2003 or generate your own kNN index file following ./code/flair/knn.ipynb

Training models

These section contains instructions for training models on CoNLL-2003 using 5% training data.

Training flair+Inter-LADA model

CUDA_VISIBLE_DEVICES=1 python ./code/flair/train.py --use-knn-train-data --num-knn-k 5 \
--knn-mix-ratio 0.6 --train-examples 749 --mix-layer 2  --mix-option --alpha 60 --beta 1.5 \
--exp-save-name 'mix'  --mini-batch-size 64  --patience 10 --use-crf 
Owner
GT-SALT
Social and Language Technologies Lab
GT-SALT
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023