Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Overview

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts

PointContrast

The rapid progress in 3D scene understanding has come with growing demand for data; however, collecting and annotating 3D scenes (e.g. point clouds) are notoriously hard. For example, the number of scenes (e.g. indoor rooms) that can be accessed and scanned might be limited; even given sufficient data, acquiring 3D labels (e.g. instance masks) requires intensive human labor. In this paper, we explore data-efficient learning for 3D point cloud. As a first step towards this direction, we propose Contrastive Scene Contexts, a 3D pre-training method that makes use of both point-level correspondences and spatial contexts in a scene. Our method achieves state-of-the-art results on a suite of benchmarks where training data or labels are scarce. Our study reveals that exhaustive labelling of 3D point clouds might be unnecessary; and remarkably, on ScanNet, even using 0.1% of point labels, we still achieve 89% (instance segmentation) and 96% (semantic segmentation) of the baseline performance that uses full annotations.

[CVPR 2021 Paper] [Video] [Project Page] [ScanNet Data-Efficient Benchmark]

Environment

This codebase was tested with the following environment configurations.

  • Ubuntu 20.04
  • CUDA 10.2
  • GCC 7.3.0
  • Python 3.7.7
  • PyTorch 1.5.1
  • MinkowskiEngine v0.4.3

Installation

We use conda for the installation process:

# Install virtual env and PyTorch
conda create -n sparseconv043 python=3.7
conda activate sparseconv043
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch

# Complie and install MinkowskiEngine 0.4.3.
conda install mkl mkl-include -c intel
wget https://github.com/NVIDIA/MinkowskiEngine/archive/refs/tags/v0.4.3.zip
cd MinkowskiEngine-0.4.3 
python setup.py install

Next, download Contrastive Scene Contexts git repository and install the requirement from the root directory.

git clone https://github.com/facebookresearch/ContrastiveSceneContexts.git
cd ContrastiveSceneContexts
pip install -r requirements.txt

Our code also depends on PointGroup and PointNet++.

# Install OPs in PointGroup by:
conda install -c bioconda google-sparsehash
cd downstream/semseg/lib/bfs/ops
python setup.py build_ext --include-dirs=YOUR_ENV_PATH/include
python setup.py install

# Install PointNet++
cd downstream/votenet/models/backbone/pointnet2
python setup.py install

Pre-training on ScanNet

Data Pre-processing

For pre-training, one can generate ScanNet Pair data by following code (need to change the TARGET and SCANNET_DIR accordingly in the script).

cd pretrain/scannet_pair
./preprocess.sh

This piece of code first extracts pointcloud from partial frames, and then computes a filelist of overlapped partial frames for each scene. Generate a combined txt file called overlap30.txt of filelists of each scene by running the code

cd pretrain/scannet_pair
python generate_list.py --target_dir TARGET

This overlap30.txt should be put into folder TARGET/splits.

Pre-training

Our codebase enables multi-gpu training with distributed data parallel (DDP) module in pytorch. To train PointContrast with 8 GPUs (batch_size=32, 4 per GPU) on a single server:

cd pretrain/contrastive_scene_contexts
# Pretrain with SparseConv backbone
OUT_DIR=./output DATASET=ROOT_PATH_OF_DATA scripts/pretrain_sparseconv.sh
# Pretrain with PointNet++ backbone
OUT_DIR=./output DATASET=ROOT_PATH_OF_DATA scripts/pretrain_pointnet2.sh

ScanNet Downstream Tasks

Data Pre-Processing

We provide the code for pre-processing the data for ScanNet downstream tasks. One can run following code to generate the training data for semantic segmentation and instance segmentation.

# Edit path variables, SCANNET_OUT_PATH
cd downstream/semseg/lib/datasets/preprocessing
python scannet.py

For ScanNet detection data generation, please refer to VoteNet ScanNet Data. Run command to soft link the generated detection data (located in PATH_DET_DATA) to following location:

# soft link detection data
cd downstream/det/
ln -s PATH_DET_DATA datasets/scannet/scannet_train_detection_data

For Data-Efficient Learning, download the scene_list and points_list as well as bbox_list from ScanNet Data-Efficient Benchmark. To Active Selection for points_list, run following code:

# Get features per point
cd downstream/semseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/inference_features.sh
# run k-means on feature space
cd lib
python sampling_points.py --point_data SCANNET_OUT_PATH --feat_data PATH_CHECKPOINT

Semantic Segmentation

We provide code for the semantic segmentation experiments conducted in our paper. Our code supports multi-gpu training. To train with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_scenes.sh

For Limited Points Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_INDS=PATH_SCENE_LIST ./scripts/data_efficient/by_points.sh

Model Zoo

We also provide our pre-trained checkpoints (and log file) for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to downloaded pre-trained model path:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh
Training Data mIoU (val) Initialization Pre-trained Model Logs Tensorboard
1% scenes 29.3 download download link link
5% scenes 45.4 download download link link
10% scenes 59.5 download download link link
20% scenes 64.1 download download link link
100% scenes 73.8 download download link link
20 points 53.8 download download link link
50 points 62.9 download download link link
100 points 66.9 download download link link
200 points 69.0 download download link link

Instance Segmentation

We provide code for the instance segmentation experiments conducted in our paper. Our code supports multi-gpu training. To train with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_scenes.sh

For Limited Points Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_INDS=PATH_POINTS_LIST ./scripts/data_efficient/by_points.sh

For ScanNet Benchmark, run following code (train on train+val and evaluate on val):

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet_benchmark.sh

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh

For submitting to ScanNet Benchmark with our pre-trained model, run following command (the submission file is located in output/benchmark_instance):

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet_benchmark.sh
Training Data [email protected] (val) Initialization Pre-trained Model Logs Curves
1% scenes 12.3 download download link link
5% scenes 33.9 download download link link
10% scenes 45.3 download download link link
20% scenes 49.8 download download link link
100% scenes 59.4 download download link link
20 points 27.2 download download link link
50 points 35.7 download download link link
100 points 43.6 download download link link
200 points 50.4 download download link link
train + val 76.5 (64.8 on test) download download link link

3D Object Detection

We provide the code for 3D Object Detection downstream task. The code is adapted directly fron VoteNet. Additionally, we provide two backones, namely PointNet++ and SparseConv. To fine-tune the downstream task, run following command:

cd downstream/votenet/
# train sparseconv backbone
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh
# train pointnet++ backbone
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet_pointnet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_Scentrain_scannet.sh

For Limited Bbox Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_BBOX=PATH_BBOX_LIST ./scripts/data_efficient/by_bboxes.sh

For submitting to ScanNet Data-Efficient Benchmark, you can set "test.write_to_bencmark=True" in "downstream/votenet/scripts/test_scannet.sh" or "downstream/votenet/scripts/test_scannet_pointnet.sh"

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can evaluate our pre-trained model by running following code.

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh
Training Data [email protected] (val) [email protected] (val) Initialize Pre-trained Model Logs Curves
10% scenes 9.9 24.7 download download link link
20% scenes 21.4 41.4 download download link link
40% scenes 29.5 52.0 download download link link
80% scenes 36.3 56.3 download download link link
100% scenes 39.3 59.1 download download link link
100% scenes (PointNet++) 39.2 62.5 download download link link
1 bboxes 30.3 54.5 download download link link
2 bboxes 32.4 55.3 download download link link
4 bboxes 34.6 58.9 download download link link
7 bboxes 35.9 59.7 download download link link

Stanford 3D (S3DIS) Fine-tuning

Data Pre-Processing

We provide the code for pre-processing the data for Stanford3D (S3DIS) downstream tasks. One can run following code to generate the training data for semantic segmentation and instance segmentation.

# Edit path variables, STANFORD_3D_OUT_PATH
cd downstream/semseg/lib/datasets/preprocessing
python stanford.py

Semantic Segmentation

We provide code for the semantic segmentation experiments conducted in our paper. Our code supports multi-gpu training. To fine-tune with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_stanford3d.sh

Model Zoo

We provide our pre-trained model and log file for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/semseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_stanford3d.sh
Training Data mIoU (val) Initialization Pre-trained Model Logs Tensorboard
100% scenes 72.2 download download link link

Instance Segmentation

We provide code for the instance segmentation experiments conducted in our paper. Our code supports multi-gpu training. To fine-tune with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_stanford3d.sh

Model Zoo

We provide our pre-trained model and log file for reference. You can evaluate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_stanford3d.sh
Training Data [email protected] (val) Initialization Pre-trained Model Logs Tensorboard
100% scenes 63.4 download download link link

SUN-RGBD Fine-tuning

Data Pre-Processing

For SUN-RGBD detection data generation, please refer to VoteNet SUN-RGBD Data. To soft link generated SUN-RGBD detection data (SUN_RGBD_DATA_PATH) to following location, run the command:

cd downstream/det/datasets/sunrgbd
# soft link 
link -s SUN_RGBD_DATA_PATH/sunrgbd_pc_bbox_votes_50k_v1_train sunrgbd_pc_bbox_votes_50k_v1_train
link -s SUN_RGBD_DATA_PATH/sunrgbd_pc_bbox_votes_50k_v1_val sunrgbd_pc_bbox_votes_50k_v1_val

3D Object Detection

We provide the code for 3D Object Detection downstream task. The code is adapted directly fron VoteNet. To fine-tune the downstream task, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_sunrgbd.sh

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can load our pre-trained model by setting the pre-trained model path to PATH_CHECKPOINT.

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_sunrgbd.sh
Training Data [email protected] (val) [email protected] (val) Initialize Pre-trained Model Log Curve
100% scenes 36.4 58.9 download download link link

Citing our paper

@article{hou2020exploring,
  title={Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts},
  author={Hou, Ji and Graham, Benjamin and Nie{\ss}ner, Matthias and Xie, Saining},
  journal={arXiv preprint arXiv:2012.09165},
  year={2020}
}

License

Contrastive Scene Contexts is relased under the MIT License. See the LICENSE file for more details.

Owner
Facebook Research
Facebook Research
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022