Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Overview

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts

PointContrast

The rapid progress in 3D scene understanding has come with growing demand for data; however, collecting and annotating 3D scenes (e.g. point clouds) are notoriously hard. For example, the number of scenes (e.g. indoor rooms) that can be accessed and scanned might be limited; even given sufficient data, acquiring 3D labels (e.g. instance masks) requires intensive human labor. In this paper, we explore data-efficient learning for 3D point cloud. As a first step towards this direction, we propose Contrastive Scene Contexts, a 3D pre-training method that makes use of both point-level correspondences and spatial contexts in a scene. Our method achieves state-of-the-art results on a suite of benchmarks where training data or labels are scarce. Our study reveals that exhaustive labelling of 3D point clouds might be unnecessary; and remarkably, on ScanNet, even using 0.1% of point labels, we still achieve 89% (instance segmentation) and 96% (semantic segmentation) of the baseline performance that uses full annotations.

[CVPR 2021 Paper] [Video] [Project Page] [ScanNet Data-Efficient Benchmark]

Environment

This codebase was tested with the following environment configurations.

  • Ubuntu 20.04
  • CUDA 10.2
  • GCC 7.3.0
  • Python 3.7.7
  • PyTorch 1.5.1
  • MinkowskiEngine v0.4.3

Installation

We use conda for the installation process:

# Install virtual env and PyTorch
conda create -n sparseconv043 python=3.7
conda activate sparseconv043
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch

# Complie and install MinkowskiEngine 0.4.3.
conda install mkl mkl-include -c intel
wget https://github.com/NVIDIA/MinkowskiEngine/archive/refs/tags/v0.4.3.zip
cd MinkowskiEngine-0.4.3 
python setup.py install

Next, download Contrastive Scene Contexts git repository and install the requirement from the root directory.

git clone https://github.com/facebookresearch/ContrastiveSceneContexts.git
cd ContrastiveSceneContexts
pip install -r requirements.txt

Our code also depends on PointGroup and PointNet++.

# Install OPs in PointGroup by:
conda install -c bioconda google-sparsehash
cd downstream/semseg/lib/bfs/ops
python setup.py build_ext --include-dirs=YOUR_ENV_PATH/include
python setup.py install

# Install PointNet++
cd downstream/votenet/models/backbone/pointnet2
python setup.py install

Pre-training on ScanNet

Data Pre-processing

For pre-training, one can generate ScanNet Pair data by following code (need to change the TARGET and SCANNET_DIR accordingly in the script).

cd pretrain/scannet_pair
./preprocess.sh

This piece of code first extracts pointcloud from partial frames, and then computes a filelist of overlapped partial frames for each scene. Generate a combined txt file called overlap30.txt of filelists of each scene by running the code

cd pretrain/scannet_pair
python generate_list.py --target_dir TARGET

This overlap30.txt should be put into folder TARGET/splits.

Pre-training

Our codebase enables multi-gpu training with distributed data parallel (DDP) module in pytorch. To train PointContrast with 8 GPUs (batch_size=32, 4 per GPU) on a single server:

cd pretrain/contrastive_scene_contexts
# Pretrain with SparseConv backbone
OUT_DIR=./output DATASET=ROOT_PATH_OF_DATA scripts/pretrain_sparseconv.sh
# Pretrain with PointNet++ backbone
OUT_DIR=./output DATASET=ROOT_PATH_OF_DATA scripts/pretrain_pointnet2.sh

ScanNet Downstream Tasks

Data Pre-Processing

We provide the code for pre-processing the data for ScanNet downstream tasks. One can run following code to generate the training data for semantic segmentation and instance segmentation.

# Edit path variables, SCANNET_OUT_PATH
cd downstream/semseg/lib/datasets/preprocessing
python scannet.py

For ScanNet detection data generation, please refer to VoteNet ScanNet Data. Run command to soft link the generated detection data (located in PATH_DET_DATA) to following location:

# soft link detection data
cd downstream/det/
ln -s PATH_DET_DATA datasets/scannet/scannet_train_detection_data

For Data-Efficient Learning, download the scene_list and points_list as well as bbox_list from ScanNet Data-Efficient Benchmark. To Active Selection for points_list, run following code:

# Get features per point
cd downstream/semseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/inference_features.sh
# run k-means on feature space
cd lib
python sampling_points.py --point_data SCANNET_OUT_PATH --feat_data PATH_CHECKPOINT

Semantic Segmentation

We provide code for the semantic segmentation experiments conducted in our paper. Our code supports multi-gpu training. To train with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_scenes.sh

For Limited Points Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_INDS=PATH_SCENE_LIST ./scripts/data_efficient/by_points.sh

Model Zoo

We also provide our pre-trained checkpoints (and log file) for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to downloaded pre-trained model path:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh
Training Data mIoU (val) Initialization Pre-trained Model Logs Tensorboard
1% scenes 29.3 download download link link
5% scenes 45.4 download download link link
10% scenes 59.5 download download link link
20% scenes 64.1 download download link link
100% scenes 73.8 download download link link
20 points 53.8 download download link link
50 points 62.9 download download link link
100 points 66.9 download download link link
200 points 69.0 download download link link

Instance Segmentation

We provide code for the instance segmentation experiments conducted in our paper. Our code supports multi-gpu training. To train with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_scenes.sh

For Limited Points Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_INDS=PATH_POINTS_LIST ./scripts/data_efficient/by_points.sh

For ScanNet Benchmark, run following code (train on train+val and evaluate on val):

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet_benchmark.sh

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh

For submitting to ScanNet Benchmark with our pre-trained model, run following command (the submission file is located in output/benchmark_instance):

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet_benchmark.sh
Training Data [email protected] (val) Initialization Pre-trained Model Logs Curves
1% scenes 12.3 download download link link
5% scenes 33.9 download download link link
10% scenes 45.3 download download link link
20% scenes 49.8 download download link link
100% scenes 59.4 download download link link
20 points 27.2 download download link link
50 points 35.7 download download link link
100 points 43.6 download download link link
200 points 50.4 download download link link
train + val 76.5 (64.8 on test) download download link link

3D Object Detection

We provide the code for 3D Object Detection downstream task. The code is adapted directly fron VoteNet. Additionally, we provide two backones, namely PointNet++ and SparseConv. To fine-tune the downstream task, run following command:

cd downstream/votenet/
# train sparseconv backbone
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh
# train pointnet++ backbone
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet_pointnet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_Scentrain_scannet.sh

For Limited Bbox Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_BBOX=PATH_BBOX_LIST ./scripts/data_efficient/by_bboxes.sh

For submitting to ScanNet Data-Efficient Benchmark, you can set "test.write_to_bencmark=True" in "downstream/votenet/scripts/test_scannet.sh" or "downstream/votenet/scripts/test_scannet_pointnet.sh"

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can evaluate our pre-trained model by running following code.

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh
Training Data [email protected] (val) [email protected] (val) Initialize Pre-trained Model Logs Curves
10% scenes 9.9 24.7 download download link link
20% scenes 21.4 41.4 download download link link
40% scenes 29.5 52.0 download download link link
80% scenes 36.3 56.3 download download link link
100% scenes 39.3 59.1 download download link link
100% scenes (PointNet++) 39.2 62.5 download download link link
1 bboxes 30.3 54.5 download download link link
2 bboxes 32.4 55.3 download download link link
4 bboxes 34.6 58.9 download download link link
7 bboxes 35.9 59.7 download download link link

Stanford 3D (S3DIS) Fine-tuning

Data Pre-Processing

We provide the code for pre-processing the data for Stanford3D (S3DIS) downstream tasks. One can run following code to generate the training data for semantic segmentation and instance segmentation.

# Edit path variables, STANFORD_3D_OUT_PATH
cd downstream/semseg/lib/datasets/preprocessing
python stanford.py

Semantic Segmentation

We provide code for the semantic segmentation experiments conducted in our paper. Our code supports multi-gpu training. To fine-tune with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_stanford3d.sh

Model Zoo

We provide our pre-trained model and log file for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/semseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_stanford3d.sh
Training Data mIoU (val) Initialization Pre-trained Model Logs Tensorboard
100% scenes 72.2 download download link link

Instance Segmentation

We provide code for the instance segmentation experiments conducted in our paper. Our code supports multi-gpu training. To fine-tune with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_stanford3d.sh

Model Zoo

We provide our pre-trained model and log file for reference. You can evaluate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_stanford3d.sh
Training Data [email protected] (val) Initialization Pre-trained Model Logs Tensorboard
100% scenes 63.4 download download link link

SUN-RGBD Fine-tuning

Data Pre-Processing

For SUN-RGBD detection data generation, please refer to VoteNet SUN-RGBD Data. To soft link generated SUN-RGBD detection data (SUN_RGBD_DATA_PATH) to following location, run the command:

cd downstream/det/datasets/sunrgbd
# soft link 
link -s SUN_RGBD_DATA_PATH/sunrgbd_pc_bbox_votes_50k_v1_train sunrgbd_pc_bbox_votes_50k_v1_train
link -s SUN_RGBD_DATA_PATH/sunrgbd_pc_bbox_votes_50k_v1_val sunrgbd_pc_bbox_votes_50k_v1_val

3D Object Detection

We provide the code for 3D Object Detection downstream task. The code is adapted directly fron VoteNet. To fine-tune the downstream task, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_sunrgbd.sh

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can load our pre-trained model by setting the pre-trained model path to PATH_CHECKPOINT.

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_sunrgbd.sh
Training Data [email protected] (val) [email protected] (val) Initialize Pre-trained Model Log Curve
100% scenes 36.4 58.9 download download link link

Citing our paper

@article{hou2020exploring,
  title={Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts},
  author={Hou, Ji and Graham, Benjamin and Nie{\ss}ner, Matthias and Xie, Saining},
  journal={arXiv preprint arXiv:2012.09165},
  year={2020}
}

License

Contrastive Scene Contexts is relased under the MIT License. See the LICENSE file for more details.

Owner
Facebook Research
Facebook Research
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
LIAO Shuiying 6 Dec 01, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022