Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

Related tags

Deep LearningARAPReg
Overview

ARAPReg

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

Installation

The code is developed using Python 3.6 and cuda 10.2 on Ubuntu 18.04.

Note that Pytorch and Pytorch Geometric versions might change with your cuda version.

Data Preparation

We provide data for 3 datasets: DFAUST, SMAL and Bone dataset.

DFAUST

We use 4264 test shapes and 32933 training shapes from DFaust dataset. You can download the dataset here. Please place dfaust.zip in data/DFaust/raw/.

SMAL

We use 400 shapes from the family 0 in SMAL dataset. We generate shapes by the SMAL demo where the mean and the variance of the pose vectors are set to 0 and 0.2. We split them to 300 training and 100 testing samples.

You can download the generated dataset here. After downloading, please move the downloaded smal.zip to ./data/SMAL/raw.

Bone

We created a conventional bone dataset with 4 categories: tibia, pelvis, scapula and femur. Each category has about 50 shapes. We split them to 40 training and 10 testing samples. You can download the dataset here. After downloading, please move bone.zip to ./data then extract it.

Testing

Pretrained checkpoints

You can find pre-trained models and training logs in the following paths:

DFAUST: checkpoints.zip. Uncompress it under repository root will place two checkpoints in DFaust/out/arap/checkpoints/ and DFaust/out/arap/test_checkpoints/.

SMAL: smal_ckpt.zip. Move it to ./work_dir/SMAL/out, then extract it.

Bone: bone_ckpt.zip. Move it to ./work_dir, then extract it. It contains checkpoints for 4 bone categories.

Run testing

After putting pre-trained checkpoints to their corresponding paths, you can run the following scripts to optimize latent vectors for shape reconstruction. Note that our model has the auto-decoder architecture, so there's still a latent vector training stage for testing shapes.

Note that both SMAL and Bone checkpoints were trained on a single GPU. Please keep args.distributed False in main.py. In your own training, you can use multiple GPUs.

DFAUST:

bash test_dfaust.sh

SMAL:

bash test_smal.sh

Bone:

bash test_smal.sh

Note that for bone dataset, we train and test 4 categories seperately. Currently there's tibia in the training and testing script. You can replace it with femur, pelvis or scapula to get results for other 3 categories.

Model training

To retrain our model, run the following scripts after downloading and extracting datasets.

DFAUST: Note that on DFaust, it is preferred to have multiple GPUs for better efficiency. The script on DFaust tracks the reconstruction error to avoid over-fitting.

bash train_and_test_dfaust.sh

SMAL:

bash train_smal.sh

Bone:

bash train_bone.sh

Train on a new dataset

Data preprocessing and loading scripts are in ./datasets. To train on a new dataset, please write data loading file similar to ./datasets/dfaust.py. Then add the dataset to ./datasets/meshdata.py and main.py. Finally you can write a similar training script like train_and_test_dfaust.sh.

Owner
Bo Sun
CS Ph.D. student at UT Austin. Email: [email protected]
Bo Sun
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023