Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Overview

Cross Domain Facial Expression Recognition Benchmark

Implementation of papers:

Pipeline

Environment

Ubuntu 16.04 LTS, Python 3.5, PyTorch 1.3

Note: We also provide docker image for this project, click here. (Tag: py3-pytorch1.3-agra)

Datasets

To apply for the AFE, please complete the AFE Database User Agreement and submit it to [email protected] or [email protected].

Note:

  1. The AFE Database Agreement needs to be signed by the faculty member at a university or college and sent it by email.
  2. In order to comply with relevant regulations, you need to apply for the image data of the following data sets by yourself, including CK+, JAFFE, SFEW 2.0, FER2013, ExpW, RAF.

Pre-Train Model

You can download pre-train models in Baidu Drive (password: tzrf) and OneDrive.

Note: To replace backbone of each methods, you should modify and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py) in the folder where you want to use the method.

Usage

Before run these script files, you should download datasets and pre-train model, and run getPreTrainedModel_ResNet.py (or getPreTrainedModel_MobileNet.py).

Run ICID

cd ICID
bash Train.sh

Run DFA

cd DFA
bash Train.sh

Run LPL

cd LPL
bash Train.sh

Run DETN

cd DETN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run FTDNN

cd FTDNN
bash Train.sh

Run ECAN

cd ECAN
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run CADA

cd CADA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Run SAFN

cd SAFN
bash TrainWithSAFN.sh

Run SWD

cd SWD
bash Train.sh

Run AGRA

cd AGRA
bash TrainOnSourceDomain.sh     # Train Model On Source Domain
bash TransferToTargetDomain.sh  # Then, Transfer Model to Target Domain

Result

Souce Domain: RAF

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 74.42 50.70 48.85 53.70 69.54 59.44
DFA ResNet-50 64.26 44.44 43.07 45.79 56.86 50.88
LPL ResNet-50 74.42 53.05 48.85 55.89 66.90 59.82
DETN ResNet-50 78.22 55.89 49.40 52.29 47.58 56.68
FTDNN ResNet-50 79.07 52.11 47.48 55.98 67.72 60.47
ECAN ResNet-50 79.77 57.28 52.29 56.46 47.37 58.63
CADA ResNet-50 72.09 52.11 53.44 57.61 63.15 59.68
SAFN ResNet-50 75.97 61.03 52.98 55.64 64.91 62.11
SWD ResNet-50 75.19 54.93 52.06 55.84 68.35 61.27
Ours ResNet-50 85.27 61.50 56.43 58.95 68.50 66.13

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 67.44 48.83 47.02 53.00 68.52 56.96
DFA ResNet-18 54.26 42.25 38.30 47.88 47.42 46.02
LPL ResNet-18 72.87 53.99 49.31 53.61 68.35 59.63
DETN ResNet-18 64.19 52.11 42.25 42.01 43.92 48.90
FTDNN ResNet-18 76.74 50.23 49.54 53.28 68.08 59.57
ECAN ResNet-18 66.51 52.11 48.21 50.76 48.73 53.26
CADA ResNet-18 73.64 55.40 52.29 54.71 63.74 59.96
SAFN ResNet-18 68.99 49.30 50.46 53.31 68.32 58.08
SWD ResNet-18 72.09 53.52 49.31 53.70 65.85 58.89
Ours ResNet-18 77.52 61.03 52.75 54.94 69.70 63.19

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 57.36 37.56 38.30 44.47 60.64 47.67
DFA MobileNet V2 41.86 35.21 29.36 42.36 43.66 38.49
LPL MobileNet V2 59.69 40.38 40.14 50.13 62.26 50.52
DETN MobileNet V2 53.49 40.38 35.09 45.88 45.26 44.02
FTDNN MobileNet V2 71.32 46.01 45.41 49.96 62.87 55.11
ECAN MobileNet V2 53.49 43.08 35.09 45.77 45.09 44.50
CADA MobileNet V2 62.79 53.05 43.12 49.34 59.40 53.54
SAFN MobileNet V2 66.67 45.07 40.14 49.90 61.40 52.64
SWD MobileNet V2 68.22 55.40 43.58 50.30 60.04 55.51
Ours MobileNet V2 72.87 55.40 45.64 51.05 63.94 57.78

Souce Domain: AFE

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-50 56.59 57.28 44.27 46.92 52.91 51.59
DFA ResNet-50 51.86 52.70 38.03 41.93 60.12 48.93
LPL ResNet-50 73.64 61.03 49.77 49.54 55.26 57.85
DETN ResNet-50 56.27 52.11 44.72 42.17 59.80 51.01
FTDNN ResNet-50 61.24 57.75 47.25 46.36 52.89 53.10
ECAN ResNet-50 58.14 56.91 46.33 46.30 61.44 53.82
CADA ResNet-50 72.09 49.77 50.92 50.32 61.70 56.96
SAFN ResNet-50 73.64 64.79 49.08 48.89 55.69 58.42
SWD ResNet-50 72.09 61.50 48.85 48.83 56.22 57.50
Ours ResNet-50 78.57 65.43 51.18 51.31 62.71 61.84

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID ResNet-18 54.26 51.17 47.48 46.44 54.85 50.84
DFA ResNet-18 35.66 45.82 34.63 36.88 62.53 43.10
LPL ResNet-18 67.44 62.91 48.39 49.82 54.51 56.61
DETN ResNet-18 44.19 47.23 45.46 45.39 58.41 48.14
FTDNN ResNet-18 58.91 59.15 47.02 48.58 55.29 53.79
ECAN ResNet-18 44.19 60.56 43.26 46.15 62.52 51.34
CADA ResNet-18 72.09 53.99 48.39 48.61 58.50 56.32
SAFN ResNet-18 68.22 61.50 50.46 50.07 55.17 57.08
SWD ResNet-18 77.52 59.15 50.69 51.84 56.56 59.15
Ours ResNet-18 79.84 61.03 51.15 51.95 65.03 61.80

Methods Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ICID MobileNet V2 55.04 42.72 34.86 39.94 44.34 43.38
DFA MobileNet V2 44.19 27.70 31.88 35.95 61.55 40.25
LPL MobileNet V2 69.77 50.23 43.35 45.57 51.63 52.11
DETN MobileNet V2 57.36 54.46 32.80 44.11 64.36 50.62
FTDNN MobileNet V2 65.12 46.01 46.10 46.69 53.02 51.39
ECAN MobileNet V2 71.32 56.40 37.61 45.34 64.00 54.93
CADA MobileNet V2 70.54 45.07 40.14 46.72 54.93 51.48
SAFN MobileNet V2 62.79 53.99 42.66 46.61 52.65 51.74
SWD MobileNet V2 64.34 53.52 44.72 50.24 55.85 53.73
Ours MobileNet V2 75.19 54.46 47.25 47.88 61.10 57.18

Mean of All Methods

Souce Domain: RAF

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 75.87 54.30 54.49 54.82 62.09 59.51
ResNet-18 69.43 51.88 47.94 51.72 61.26 56.45
MobileNet V2 60.78 45.15 39.59 47.92 56.46 49.98

Souce Domain: AFE

Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean
ResNet-50 65.41 57.93 47.04 47.26 57.87 55.10
ResNet-18 60.23 56.25 46.95 47.57 58.34 53.87
MobileNet V2 63.57 48.46 40.14 44.91 56.34 50.68

Citation

@article{chen2020cross,
  title={Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchmark and Adversarial Graph Learning},
  author={Chen, Tianshui and Pu, Tao and Wu, Hefeng and Xie, Yuan and Liu, Lingbo and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3131222}
}

@inproceedings{xie2020adversarial,
  title={Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition},
  author={Xie, Yuan and Chen, Tianshui and Pu, Tao and Wu, Hefeng and Lin, Liang},
  booktitle={Proceedings of the 28th ACM international conference on Multimedia},
  year={2020}
}

Contributors

For any questions, feel free to open an issue or contact us:

Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022