Official implementation of Protected Attribute Suppression System, ICCV 2021

Related tags

Deep LearningPASS
Overview

Introduction

This repository contains the source code for training PASS-g and PASS-s using features from a pre-trained model.

BibTeX:

@InProceedings{Dhar_Gleason_2021_ICCV,
    author    = {Dhar, Prithviraj and Gleason, Joshua and Roy, Aniket and Castillo, Carlos D. and Chellappa, Rama},
    title     = {{PASS}: Protected Attribute Suppression System for Mitigating Bias in Face Recognition},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {15087-15096}
}

Running The Code

Requirements are defined in requirements.txt and may be installed in a new virtual environment using

pip install -r requirements.txt

An example configuration is defined in config/config_template.yaml.

In the config file set TYPE:'race' for PASS-s or TYPE:'gender' for PASS-g.

Required Input Files

Training features (train.py)

This file should be provided in the TRAIN_BIN_FEATS and VAL_BIN_FEATS config entries. Must be a binary file. Given a numpy array of N 512-dimensional features you can create this file using the following snippet (note we assume binary file created with same byte order as system used to train)

import numpy as np
import struct

# feat = ... (load features into np.ndarray of shape [N, 512])
# ...

with open('input_features.bin', 'wb') as f:
    f.write(struct.pack('i', np.int32(N)))
    f.write(struct.pack('i', np.int32(512)))
    np.ascontiguousarray(feat).astype(np.float32).tofile(f)

Training metadata (train.py)

This file should be provided in the TRAIN_META and VAL_META config entries. This CSV file must contain information about each training feature (one-to-one corresponding) and must contain the following columns:

SUBJECT_ID,FILENAME,RACE,PR_MALE
  • SUBJECT_ID is an integer corresponding to subject
  • FILENAME is original filename that feature was extracted from (not used currently)
  • RACE is an integer representing a BUPT class label between 0 and 3 with {0: asian, 1: caucasian, 2: african, 3: indian}
  • PR_MALE is a float between 0 and 1 representing probability that subject is male

Note that for PASS-g RACE may be omitted and for PASS-s PR_MALE may be omitted.

Test features (inference.py)

CSV file containing features to perform debiasing on after training is finished with following columns:

SUBJECT_ID,FILENAME,DEEPFEATURE_1,...,DEEPFEATURE_512

where DEEPFEATURE_* contains the value of the input feature at the specified dimension.


To run PASS training execute

python train.py

To generate debiased features, select the desired checkpoint file and update CHECKPOINT_FILE in the config then run

python inference.py
Owner
Prithviraj Dhar
Prithviraj Dhar
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network β €β € A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit πŸš€ πŸš€ πŸš€ Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi πŸ‘‹ , I'm Alireza A Python Developer Boy πŸ”­ I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

Rishit Dagli 101 Nov 01, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition MichaΓ«l Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
You Only Look Once for Panopitic Driving Perception

You Only πŸ‘€ Once for Panoptic πŸš— Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022