Benchmark for Answering Existential First Order Queries with Single Free Variable

Overview

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs

This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1 stands for the Existential First Order Queries with Single Free Varibale. The related paper has been submitted to the NeurIPS 2021 track on dataset and benchmark. OpenReview Link, and appeared on arXiv

If this work helps you, please cite

@article{EFO-1-QA,
  title={Benchmarking the Combinatorial Generalizability of Complex Query Answering on Knowledge Graphs},
  author={Wang, Zihao and Yin, Hang and Song, Yangqiu},
  journal={arXiv preprint arXiv:2109.08925},
  year={2021}
}

The pipeline overview.

alt text

  1. Query type generation and normalization The query types are generated by the DFS iteration of the context free grammar with the bounded negation hypothesis. The generated types are also normalized to several normal forms
  2. Query grounding and answer sampling The queries are grounded on specific knowledge graphs and the answers that are non-trivial are sampled.
  3. Model training and estimation We train and evaluate the specific query structure

Query type generation and normalization

The OpsTree is represented in the nested objects of FirstOrderSetQuery class in fol/foq_v2.py. We first generate the specific OpsTree and then store then by the formula property of FirstOrderSetQuery.

The OpsTree is generated by binary_formula_iterator in fol/foq_v2.py. The overall process is managed in formula_generation.py.

To generate the formula, just run

python formula_generation.py

Then the file formula csv is generated in the outputs folder. In this paper, we use the file in outputs/test_generated_formula_anchor_node=3.csv

Query grounding and answer sampling

We first prepare the KG data and then run the sampling code

The KG data (FB15k, FB15k-237, NELL995) should be put into under 'data/' folder. We use the data provided in the KGReasoning.

The structure of the data folder should be at least

data
	|---FB15k-237-betae
	|---FB15k-betae
	|---NELL-betae	

Then we can run the benchmark sampling code on specific knowledge graph by

python benchmark_sampling.py --knowledge_graph FB15k-237 
python benchmark_sampling.py --knowledge_graph FB15k
python benchmark_sampling.py --knowledge_graph NELL

Append new forms to existing data One can append new forms to the existing dataset by

python append_new_normal_form.py --knowledge_graph FB15k-237 

Model training and estimation

Models

Examples

The detailed setting of hyper-parameters or the knowledge graph to choose are in config folder, you can modify those configurations to create your own, all the experiments are on FB15k-237 by default.

Besides, the generated benchmark, one can also use the BetaE dataset after converting to our format by running:

python transform_beta_data.py

Use one of the commands in the following, depending on the choice of models:

python main.py --config config/{data_type}_{model_name}.yaml
  • The data_type includes benchmark and beta
  • The model_name includes BetaE, LogicE, NewLook and Query2Box

If you need to evaluate on the EFO-1-QA benchmark, be sure to load from existing model checkpoint, you can train one on your own or download from here:

python main.py --config config/benchmark_beta.yaml --checkpoint_path ckpt/FB15k/Beta_full
python main.py --config config/benchmark_NewLook.yaml --checkpoint_path ckpt/FB15k/NLK_full --load_step 450000
python main.py --config config/benchmark_Logic.yaml --checkpoint_path ckpt/FB15k/Logic_full --load_step 450000

We note that the BetaE checkpoint above is trained from KGReasoning

Paper Checklist

  1. For all authors..

    (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? Yes

    (b) Have you read the ethics review guidelines and ensured that your paper conforms to them? Yes

    (c) Did you discuss any potential negative societal impacts of your work? No

    (d) Did you describe the limitations of your work? Yes

  2. If you are including theoretical results...

    (a) Did you state the full set of assumptions of all theoretical results? N/A

    (b) Did you include complete proofs of all theoretical results? N/A

  3. If you ran experiments...

    (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? Yes

    (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? Yes

    (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? No

    (d) Did you include the amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? No

  4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

    (a) If your work uses existing assets, did you cite the creators? Yes

    (b) Did you mention the license of the assets? No

    (c) Did you include any new assets either in the supplemental material or as a URL? Yes

    (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? N/A

    (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? N/A

  5. If you used crowdsourcing or conducted research with human subjects...

    (a) Did you include the full text of instructions given to participants and screenshots, if applicable? N/A

    (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? N/A

    (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? N/A

Owner
HKUST-KnowComp
Knowledge Computation [email protected], led by Yangqiu Song
HKUST-KnowComp
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022