Align and Prompt: Video-and-Language Pre-training with Entity Prompts

Overview

ALPRO

Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper]

Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H. Hoi

Official PyTorch code for ALPRO. This repository supports pre-training as well as finetuning on

  • Text-Video Retrieval on MSRVTT and DiDeMo.
  • Video Question Anwsering on MSRVTT and MSVD.

Requirements

Our implementation is tested on Ubuntu 20.04.1 with NVIDIA A100 GPUs. Supports for other platforms and hardwares are possible with no warrant. To install the required packages:

cd env && bash install_pkg.sh

Data Preparation

  1. Download Annotations and Pre-trained Checkpoints

  2. Download raw videos of downstream datasets.

    • MSRVTT:
      • download train_val_videos.zip and test_videos.zip from e.g. here.

      • check md5sum:

        51f2394d279cf84f1642defd9a651e6f  train_val_videos.zip
        0af68454cec9d586e92805739f3911d0  test_videos.zip
      • unzip all the videos into data/msrvtt_ret/videos (10k in total).

      • create the following soft link:

        ln -s data/msrvtt_ret/videos data/msrvtt_qa/videos```
    • MSVD:
      • download from official release:

        wget -nc https://www.cs.utexas.edu/users/ml/clamp/videoDescription/YouTubeClips.tar
      • check md5sum:

        9bdb20fcf14d59524a6febca9f6a8d89  YouTubeClips.tar
      • unzip all the videos to data/msvd_qa/videos (1,970 videos in total).

        mkdir data/msvd_qa/videos/ 
        tar xvf YouTubeClips.tar -C data/msvd_qa/videos --strip-components=1
    • DiDeMo:
      • Following instructions and download from the official release here;
      • unzip all the videos into data/didemo_ret/videos.
      • Note there might be a couple videos missing. See here to download. However, as they account for a small portion of training set, you may feel safe to ignore.
      • Convert all the DiDeMo videos into *.mp4 format using e.g. ffmpeg.
      • We obtained 10,463 videos following these steps (with one video [email protected]_5753455690_1e04ccb364 missing).
  3. The directory is expected to be in the structure below:

    .
    |-config_release  # configuration files
    |-data  # text annotations and raw videos
    |---didemo_ret
    |-----txt
    |-----videos
    |---msrvtt_qa/...
    |---msrvtt_ret/...
    |---msvd_qa/...
    |-env  # scripts to install packages
    |-ext  # external resources, e.g. bert tokenizer
    |-output  # checkpoints for pre-trained/finetuned models
    |---downstreams
    |-----didemo_ret
    |-------public
    |---------ckpt # official finetuned checkpoints
    |---------log # inference log
    |---------results_test
    |-----------step_best_1_mean
    |-----msrvtt_qa/...
    |-----msrvtt_ret/...
    |-----msvd_qa/...
    |-run_scripts  # bash scripts to launch experiments
    |-src  # source code

Inference with Official Checkpoints

cd run_scripts
bash inf_msrvtt_ret.sh
# {'text2video': {'r1': 33.9, 'r5': 60.7, 'r10': 73.2, 'medianR': 3.0, 'meanR': 27.404}}
bash inf_didemo_ret.sh
# {'text2video': {'r1': 35.9, 'r5': 67.5, 'r10': 78.8, 'medianR': 3.0, 'meanR': 19.125}}
bash inf_msrvtt_qa.sh
# {'ratios': {'what_ratio': [68.48, 49872], 'who_ratio': [27.99, 20385], 'how_ratio': [2.25, 1640], 'where_ratio': [0.34, 250], 'when_ratio': [0.93, 677]}, 'overall_acc': 42.12, 'what_acc': 36.05, 'who_acc': 52.24, 'how_acc': 85.67, 'where_acc': 42.8, 'when_acc': 78.88}
bash inf_msvd_qa.sh
# {'ratios': {'what_ratio': [61.93, 8150], 'who_ratio': [34.6, 4554], 'how_ratio': [2.81, 370], 'where_ratio': [0.21, 28], 'when_ratio': [0.44, 58]}, 'overall_acc': 45.91, 'what_acc': 37.02, 'who_acc': 58.59, 'how_acc': 81.62, 'where_acc': 46.43, 'when_acc': 72.41}

Downstream Task Finetuning

  • To finetune on downstream tasks with the pre-trained checkpoint output/pretrain/alpro_pretrained_ckpt.pt

    cd run_scripts
    bash ft_msrvtt_ret.sh
    bash ft_didemo_ret.sh
    bash ft_msrvtt_qa.sh
    bash ft_msvd_qa.sh

    For example, with MSRVTT retrieval:

    cd ALPRO/
    
    export PYTHONPATH="$PYTHONPATH:$PWD"
    echo $PYTHONPATH
    
    CONFIG_PATH='config_release/msrvtt_ret.json'
    
    horovodrun -np 8 python src/tasks/run_video_retrieval.py \ # change -np to GPUs numbers.
        --config $CONFIG_PATH \
        --output_dir /export/home/workspace/experiments/alpro/finetune/msrvtt_ret/$(date '+%Y%m%d%H%M%S')  # change to your local path to store finetuning ckpts and logs 
  • Run inference with locally-finetuned checkpoints.

     cd ALPRO/
    
     export PYTHONPATH="$PYTHONPATH:$PWD"
     echo $PYTHONPATH
    
     STEP='best'
    
     CONFIG_PATH='config_release/msrvtt_ret.json'
     OUTPUT_DIR='[INPUT_YOUR_OUTPUT_PATH_HERE]'
    
     TXT_DB='data/msrvtt_ret/txt/test.jsonl'
     IMG_DB='data/msrvtt_ret/videos'
    
     horovodrun -np 8 python src/tasks/run_video_retrieval.py \
         --do_inference 1 \
         --inference_split test \
         --inference_model_step $STEP \
         --inference_txt_db $TXT_DB \
         --inference_img_db $IMG_DB \
         --inference_batch_size 64 \
         --output_dir $OUTPUT_DIR \
         --config $CONFIG_PATH
    • OUTPUT_DIR is the path after the --output_dir option in the finetuning script.
    • $STEP is a string, which tells the script to use the checkpoint $OUTPUT_DIR/ckpt/model_step_$STEP.pt for inference.

Pretraining

  1. Download WebVid2M and CC-3M.

    • Put WebVid2M videos under data/webvid2m;
    • 💡 we downsample webvid2m videos to 10% of the original FPS to speed-up video loading;
    • change data/cc3m/txt/cc3m.json with local image paths.
  2. Training Prompter:

    cd run_scripts && bash pt_prompter.sh
  3. Training video-language model:

    cd run_scripts && bash pt_alpro.sh

    If you would like to use custom prompter weight, please change teacher_weights_path in config_release/pretrain_alpro.json

  4. To finetune with pre-trained checkpoints, please change e2e_weights_path in the finetuning config files, e.g. config_release/msrvtt_ret.json.

Citation

If you find ALPRO useful for your research, please consider citing:

  @inproceedings{li2021align,
    title={Align and Prompt: Video-and-Language Pre-training with Entity Prompts},
    author={Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H. Hoi},
    booktitle={arxiv},
    year={2021}
  }

Acknowledgement

We thank members at Salesforce Research for their helpful discussions.

The implementation of ALPRO relies on resources from ClipBERT, transformers, TimeSformer, The code is implemented using PyTorch, with multi-GPU support from Horovod and gradient-checkpoint. We thank the original authors for their open-sourcing and encourage ALPRO users to cite their works when applicable.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022