Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Related tags

Deep LearningMetaD2A
Overview

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets

This is the official PyTorch implementation for the paper Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets (ICLR 2021) : https://openreview.net/forum?id=rkQuFUmUOg3.

Abstract

Despite the success of recent Neural Architecture Search (NAS) methods on various tasks which have shown to output networks that largely outperform human-designed networks, conventional NAS methods have mostly tackled the optimization of searching for the network architecture for a single task (dataset), which does not generalize well across multiple tasks (datasets). Moreover, since such task-specific methods search for a neural architecture from scratch for every given task, they incur a large computational cost, which is problematic when the time and monetary budget are limited. In this paper, we propose an efficient NAS framework that is trained once on a database consisting of datasets and pretrained networks and can rapidly search a neural architecture for a novel dataset. The proposed MetaD2A (Meta Dataset-to-Architecture) model can stochastically generate graphs (architectures) from a given set (dataset) via a cross-modal latent space learned with amortized meta-learning. Moreover, we also propose a meta-performance predictor to estimate and select the best architecture without direct training on target datasets. The experimental results demonstrate that our model meta-learned on subsets of ImageNet-1K and architectures from NAS-Bench 201 search space successfully generalizes to multiple benchmark datasets including CIFAR-10 and CIFAR-100, with an average search time of 33 GPU seconds. Even under a large search space, MetaD2A is 5.5K times faster than NSGANetV2, a transferable NAS method, with comparable performance. We believe that the MetaD2A proposes a new research direction for rapid NAS as well as ways to utilize the knowledge from rich databases of datasets and architectures accumulated over the past years.

Framework of MetaD2A Model

Prerequisites

  • Python 3.6 (Anaconda)
  • PyTorch 1.6.0
  • CUDA 10.2
  • python-igraph==0.8.2
  • tqdm==4.50.2
  • torchvision==0.7.0
  • python-igraph==0.8.2
  • nas-bench-201==1.3
  • scipy==1.5.2

If you are not familiar with preparing conda environment, please follow the below instructions

$ conda create --name metad2a python=3.6
$ conda activate metad2a
$ conda install pytorch==1.6.0 torchvision cudatoolkit=10.2 -c pytorch
$ pip install nas-bench-201
$ conda install -c conda-forge tqdm
$ conda install -c conda-forge python-igraph
$ pip install scipy

And for data preprocessing,

$ pip install requests

Hardware Spec used for experiments of the paper

  • GPU: A single Nvidia GeForce RTX 2080Ti
  • CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

NAS-Bench-201

Go to the folder for NAS-Bench-201 experiments (i.e. MetaD2A_nas_bench_201)

$ cd MetaD2A_nas_bench_201

Data Preparation

To download preprocessed data files, run get_files/get_preprocessed_data.py:

$ python get_files/get_preprocessed_data.py

It will take some time to download and preprocess each dataset.

To download MNIST, Pets and Aircraft Datasets, run get_files/get_{DATASET}.py

$ python get_files/get_mnist.py
$ python get_files/get_aircraft.py
$ python get_files/get_pets.py

Other datasets such as Cifar10, Cifar100, SVHN will be automatically downloaded when you load dataloader by torchvision.

If you want to use your own dataset, please first make your own preprocessed data, by modifying process_dataset.py .

$ process_dataset.py

MetaD2A Evaluation (Meta-Test)

You can download trained checkpoint files for generator and predictor

$ python get_files/get_checkpoint.py
$ python get_files/get_predictor_checkpoint.py

1. Evaluation on Cifar10 and Cifar100

By set --data-name as the name of dataset (i.e. cifar10, cifar100), you can evaluate the specific dataset only

# Meta-testing for generator 
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 --test --load-epoch 400 --num-gen-arch 500 --data-name {DATASET_NAME}

After neural architecture generation is completed, meta-performance predictor selects high-performing architectures among the candidates

# Meta-testing for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 --test --num-gen-arch 500 --data-name {DATASET_NAME}

2. Evaluation on Other Datasets

By set --data-name as the name of dataset (i.e. mnist, svhn, aircraft, pets), you can evaluate the specific dataset only

# Meta-testing for generator
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 --test --load-epoch 400 --num-gen-arch 50 --data-name {DATASET_NAME}

After neural architecture generation is completed, meta-performance predictor selects high-performing architectures among the candidates

# Meta-testing for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 --test --num-gen-arch 50 --data-name {DATASET_NAME}

Meta-Training MetaD2A Model

You can train the generator and predictor as follows

# Meta-training for generator
$ python main.py --gpu 0 --model generator --hs 56 --nz 56 
                 
# Meta-training for predictor
$ python main.py --gpu 0 --model predictor --hs 512 --nz 56 

Results

The results of training architectures which are searched by meta-trained MetaD2A model for each dataset

Accuracy

CIFAR10 CIFAR100 MNIST SVHN Aircraft Oxford-IIT Pets
PC-DARTS 93.66±0.17 66.64±0.04 99.66±0.04 95.40±0.67 46.08±7.00 25.31±1.38
MetaD2A (Ours) 94.37±0.03 73.51±0.00 99.71±0.08 96.34±0.37 58.43±1.18 41.50±4.39

Search Time (GPU Sec)

CIFAR10 CIFAR100 MNIST SVHN Aircraft Oxford-IIT Pets
PC-DARTS 10395 19951 24857 31124 3524 2844
MetaD2A (Ours) 69 96 7 7 10 8

MobileNetV3 Search Space

Go to the folder for MobileNetV3 Search Space experiments (i.e. MetaD2A_mobilenetV3)

$ cd MetaD2A_mobilenetV3

And follow README.md written for experiments of MobileNetV3 Search Space

Citation

If you found the provided code useful, please cite our work.

@inproceedings{
    lee2021rapid,
    title={Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets},
    author={Hayeon Lee and Eunyoung Hyung and Sung Ju Hwang},
    booktitle={ICLR},
    year={2021}
}

Reference

Owner
Ph.D. student @ School of Computing, Korea Advanced Institute of Science and Technology (KAIST)
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022