A cross-lingual COVID-19 fake news dataset

Overview

CrossFake

An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below:
Cross-lingual COVID-19 Fake News Detection.
Jiangshu Du, Yingtong Dou, Congying Xia, Limeng Cui, Jing Ma, Philip S. Yu.

Introduction

The COVID-19 pandemic poses a significant threat to global public health. Meanwhile, there is massive misinformation associated with the pandemic, which advocates unfounded or unscientific claims. Even major social media and news outlets have made an extra effort in debunking COVID-19 misinformation, most of the fact-checking information is in English, whereas some unmoderated COVID-19 misinformation is still circulating in other languages, threatening the health of less informed people in immigrant communities and developing countries (The Vox, New York Times).

In the above paper, we make the first attempt to detect COVID-19 misinformation in a low-resource language (Chinese) only using the fact-checked news in a high-resource language (English).

This repo contains a Chinese-English real & fake news dataset according to existing English fact-checking information. Details on this dataset are described in Dataset Detail.

The highlights of our dataset are as follows:

  • Bilingual news pieces for the same event (fact).
  • Multiple Chinese news pieces for the same event (fact).
  • Comprehensive metadata for each news (see below).

Dataset Detail

The table below shows the number of annotated news in each language:

Lang. Fake Real Total
ENG 55 82 137
CHN 101 118 219

The metadata of our dataset can be found at CrossFake_metadata.xlsx, which includes two sheets (news_fake and news_real). Given the news id, you can find the corresponding news body text in the body_text directory. The meanings of each column of the metadata are shown below:

  • Column A (id):

    News id. Chinese real & fake news is annotated according to existing English fact-checking information. Thus, each piece of English news may correspond to multiple pieces of Chinese news from different sources. For example, in the news_fake sheet, the ids 1_1 and 1_2 indicate one piece of English news, corresponding to two pieces of Chinese news.

  • Column B (fact_check_url):

    The fact-checking source of the corresponding English news.

  • Column C (type):

    The news type. Post and Article represent the news is from a social media post or an online article, respectively. Note that we also annotated some clickbait news whose title and body text present contradictory information.

  • Column D (source):

    The news source. Personal and Professional represent the news is from a personal account or professional source (WHO, NIH, etc.), respectively.

  • Column E (mixed?):

    Whether the news include mixed content? If a news body text only has the content related to the checked fact, the piece of news is annotated as not mixed. Accordingly, the news whose content includes events/facts besides the checked fact is regarded as mixed news.

  • Column F (platform):

    The platform where the news is published.

  • Column G (news_url):

    The news source URL. Note that some of the links are invalid due to the deletion/removal of the news. We have archived the accessible news (see Column H) during we curate the dataset.

  • Column H (archive):

    The archived news link. To permanently store the original news, we archived the news source URL.

  • Column I (newstitle):

    The news title.

  • Column J (publish_date):

    The news publishing date.

  • Columns K to R have the same meanings as Columns C to J, but they indicate the information of Chinese news.

Case Study

Besides the findings and conclusions presented in our paper. We have extra interesting findings during collecting the data:

  1. Mixed Fact. For some fake news, their corresponding Chinese news articles presented them in the form of a news digest with other news events. It brings an extra hurdle to fact-check those news pieces since only partial content of the news contains misinformation. A typical example is news_id 8_3 in the news_fake sheet. You can check out other news whose mixed? annotated as Yes.

  2. Misused Fact. For news_real id 9_2, we find a Chinese social post leveraging the fact that "coronavirus can live for up to 4 hours on copper" to promote their copper-made pot. In this case, even the title and most of the news content seem legit, but the connection between "the copper kills coronavirus" and "copper pot is good" is still questionable.

  3. Fake News Type. During we annotate the Chinese news based on the fact-checked English news. We find that most of the fact-checked fake news from Politifact have no corresponding Chinese news. Those news pieces usually are local news in the United States.

  4. Cross-lingual Fact-checking. For the news_real id 9_1, we find a Chinese news piece from a professional news outlet published five days earlier than the fact-checked English Facebook post. It suggests that we could leverage fact information from another language to help fact-check the news. Note that most of the Chinese news in our datasets are published later than the source English news since most of the checked news events are originated in English media.

Future Directions

Given the current dataset, some future research directions include:

  • The writing style/sentiment/stance differences between fake news and real news.
  • The writing style/sentiment/stance differences between professional news outlets and personal accounts.
  • The information distortion/loss from English news to Chinese news.
  • The temporal patterns of cross-lingual news migration.
  • The title patterns of different news.

Citation

If you use our code, please cite the paper below:

@inproceedings{du2021cross,
  title={Cross-lingual COVID-19 Fake News Detection},
  author={Du, Jiangshu and Dou, Yingtong and Xia, Congying and Cui, Limeng and Ma, Jing and Yu, Philip S},
  booktitle={Proceedings of the 21st IEEE International Conference on Data Mining Workshops (ICDMW'21)},
  year={2021}
}
Owner
Yingtong Dou
Ph.D. @ UIC. Graph Mining; Fraud Detection; Secure Machine Learning
Yingtong Dou
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
Deep Residual Networks with 1K Layers

Deep Residual Networks with 1K Layers By Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Microsoft Research Asia (MSRA). Table of Contents Introduc

Kaiming He 856 Jan 06, 2023
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022