Table Extraction Tool

Overview

Tree Structure - Table Extraction

Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables. A crucial step in this process is the construction of the hierarchical tree of context objects such as text blocks, figures, tables, etc. The system currently uses PDF to HTML conversion provided by Adobe Acrobat converter. Adobe Acrobat converter is not an open source tool and this can be very inconvenient for Fonduer users. We therefore need to build our own module as replacement to Adobe Acrobat. Several open source tools are available for pdf to html conversion but these tools do not preserve the cell structure in a table. Our goal in this project is to develop a tool that extracts text, figures and tables in a pdf document and maintains the structure of the document using a tree data structure.

This project is using the table-extraction tool (https://github.com/xiao-cheng/table-extraction).

Dependencies

pip install -r requirements.txt

Environment variables

First, set environment variables. The DATAPATH folder should contain the pdf files that need to be processed.

source set_env.sh

Tutorial

The table-extraction/tutorials/ folder contains a notebook table-extraction-demo.ipynb. In this demo we detail the different steps of the table extraction tool and display some examples of table detection results for paleo papers. However, to extract tables for new documents, the user should directly use the command line tool detailed in the next section.

Command Line Usage

To use the tool via command line, run:

source set_env.sh

python table-extraction/ml/extract_tables.py [-h]

usage: extract_tables.py [-h] [--mode MODE] [--train-pdf TRAIN_PDF]
                         [--test-pdf TEST_PDF] [--gt-train GT_TRAIN]
                         [--gt-test GT_TEST] [--model-path MODEL_PATH]
                         [--iou-thresh IOU_THRESH]

Script to extract tables bounding boxes from PDF files using a machine
learning approach. if model.pkl is saved in the model-path, the pickled model
will be used for prediction. Otherwise the model will be retrained. If --mode
is test (by default), the script will create a .bbox file containing the
tables for the pdf documents listed in the file --test-pdf. If --mode is dev,
the script will also extract ground truth labels fot the test data and compute
some statistics. To run the script on new documents, specify the path to the
list of pdf to analyze using the argument --test-pdf. Those files must be
saved in the DATAPATH folder.

optional arguments:
  -h, --help            show this help message and exit
  --mode MODE           usage mode dev or test, default is test
  --train-pdf TRAIN_PDF
                        list of pdf file names used for training. Those files
                        must be saved in the DATAPATH folder (cf set_env.sh)
                        must be saved in the DATAPATH folder (cf set_env.sh)
  --test-pdf TEST_PDF   list of pdf file names used for testing. Those files
                        must be saved in the DATAPATH folder (cf set_env.sh)
  --gt-train GT_TRAIN   ground truth train tables
  --gt-test GT_TEST     ground truth test tables
  --model-path MODEL_PATH
                        pretrained model
  --iou-thresh IOU_THRESH
                        intersection over union threshold to remove duplicate
                        tables

Each document must be saved in the DATAPATH folder.

The script will create a .bbox file where each row contains tables coordinates of the corresponding row document in the --test_pdf file.

The bounding boxes are stored in the format (page_num, page_width, page_height, top, left, bottom, right) and are separated with ";".

Evaluation

We provide an evaluation code to compute recall, precision and F1 score at the character level.

python table-extraction/evaluation/char_level_evaluation.py [-h] pdf_files extracted_bbox gt_bbox

usage: char_level_evaluation.py [-h] pdf_files extracted_bbox gt_bbox

Computes scores for the table localization task. Returns Recall and Precision
for the sub-objects level (characters in text). If DISPLAY=TRUE, display GT in
Red and extracted bboxes in Blue

positional arguments:
  pdf_files       list of paths of PDF file to process
  extracted_bbox  extracting bounding boxes (one line per pdf file)
  gt_bbox         ground truth bounding boxes (one line per pdf file)

optional arguments:
  -h, --help      show this help message and exit
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

NVIDIA Research Projects 31 Nov 22, 2022
Convert Text-to Handwriting Using Python

Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t

8 Nov 19, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera.

Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip location is mapped to RGB images to control the mouse cursor.

Ravi Sharma 71 Dec 20, 2022
Detect and fix skew in images containing text

Alyn Skew detection and correction in images containing text Image with skew Image after deskew Install and use via pip! Recommended way(using virtual

Kakul 230 Dec 21, 2022
OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Alan Tang 354 Dec 12, 2022
Automatic Number Plate Recognition (ANPR) is a highly accurate system capable of reading vehicle number plates without human intervention

ANPR ANPR is therefore the underlying technology used to find a vehicle license/number plate and it, in turn, supplies this information to a next stag

Melih Emin Kılıçoğlu 1 Jan 09, 2022
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022
Machine Leaning applied to denoise images to improve OCR Accuracy

Machine Learning to Denoise Images for Better OCR Accuracy This project is an adaptation of this tutorial and used only for learning purposes: https:/

Antonio Bri Pérez 2 Nov 16, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 47k Jan 07, 2023
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022
Extract tables from scanned image PDFs using Optical Character Recognition.

ocr-table This project aims to extract tables from scanned image PDFs using Optical Character Recognition. Install Requirements Tesseract OCR sudo apt

Abhijeet Singh 209 Dec 06, 2022
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022