SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

Overview

SceneCollisionNet

This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more information, please visit the project website.

License

This repo is released under NVIDIA source code license. For business inquiries, please contact [email protected]. For press and other inquiries, please contact Hector Marinez at [email protected]

Install and Setup

Clone and install the repo (we recommend a virtual environment, especially if training or benchmarking, to avoid dependency conflicts):

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .

These commands install the minimum dependencies needed for generating a mesh dataset and then training/benchmarking using Docker. If you instead wish to train or benchmark without using Docker, please first install an appropriate version of PyTorch and corresponding version of PyTorch Scatter for your system. Then, execute these commands:

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .[train]

If benchmarking, replace train in the last command with bench.

To rollout the object rearrangement MPPI policy in a simulated tabletop environment, first download Isaac Gym and place it in the extern folder within this repo. Next, follow the previous installation instructions for training, but replace the train option with policy.

To download the pretrained weights for benchmarking or policy rollout, run bash scripts/download_weights.sh.

Generating a Mesh Dataset

To save time during training/benchmarking, meshes are preprocessed and mesh stable poses are calculated offline. SceneCollisionNet was trained using the ACRONYM dataset. To use this dataset for training or benchmarking, download the ShapeNetSem meshes here (note: you must first register for an account) and the ACRONYM grasps here. Next, build Manifold (an external library included as a submodule):

./scripts/install_manifold.sh

Then, use the following script to generate a preprocessed version of the ACRONYM dataset:

python tools/generate_acronym_dataset.py /path/to/shapenetsem/meshes /path/to/acronym datasets/shapenet

If you have your own set of meshes, run:

python tools/generate_mesh_dataset.py /path/to/meshes datasets/your_dataset_name

Note that this dataset will not include grasp data, which is not needed for training or benchmarking SceneCollisionNet, but is be used for rolling out the MPPI policy.

Training/Benchmarking with Docker

First, install Docker and nvidia-docker2 following the instructions here. Pull the SceneCollisionNet docker image from DockerHub (tag scenecollisionnet) or build locally using the provided Dockerfile (docker build -t scenecollisionnet .). Then, use the appropriate configuration .yaml file in cfg to set training or benchmarking parameters (note that cfg file paths are relative to the Docker container, not the local machine) and run one of the commands below (replacing paths with your local paths as needed; -v requires absolute paths).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_scenecollisionnet_docker.sh

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:ro -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/benchmark_scenecollisionnet_docker.sh

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Loss Plots

To get loss plots while training, run:

docker exec -d <container_name> python3 tools/loss_plots.py /models/<model_name>/log.csv

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/benchmark_results:/benchmark:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/benchmark_baseline_docker.sh

Training/Benchmarking without Docker

First, install system dependencies. The system dependencies listed assume an Ubuntu 18.04 install with NVIDIA drivers >= 450.80.02 and CUDA 10.2. You can adjust the dependencies accordingly for different driver/CUDA versions. Note that the NVIDIA drivers come packaged with EGL, which is used during training and benchmarking for headless rendering on the GPU.

System Dependencies

See Dockerfile for a full list. For training/benchmarking, you will need:

python3-dev
python3-pip
ninja-build
libcudnn8=8.1.1.33-1+cuda10.2
libcudnn8-dev=8.1.1.33-1+cuda10.2
libsm6
libxext6
libxrender-dev
freeglut3-dev
liboctomap-dev
libfcl-dev
gifsicle
libfreetype6-dev
libpng-dev

Python Dependencies

Follow the instructions above to install the necessary dependencies for your use case (either the train, bench, or policy options).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/train_scenecollisionnet.py

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

python tools/train_robotcollisionnet.py

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_scenecollisionnet.py

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

python tools/benchmark_robotcollisionnet.py

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_baseline.py

Policy Rollout

To view a rearrangement MPPI policy rollout in a simulated Isaac Gym tabletop environment, run the following command (note that this requires a local machine with an available GPU and display):

python tools/rollout_policy.py --self-coll-nn weights/self_coll_nn --scene-coll-nn weights/scene_coll_nn --control-frequency 1

There are many possible options for this command that can be viewed using the --help command line argument and set with the appropriate argument. If you get RuntimeError: CUDA out of memory, try reducing the horizon (--mppi-horizon, default 40), number of trajectories (--mppi-num-rollouts, default 200) or collision steps (--mppi-collision-steps, default 10). Note that this may affect policy performance.

Citation

If you use this code in your own research, please consider citing:

@inproceedings{danielczuk2021object,
  title={Object Rearrangement Using Learned Implicit Collision Functions},
  author={Danielczuk, Michael and Mousavian, Arsalan and Eppner, Clemens and Fox, Dieter},
  booktitle={Proc. IEEE Int. Conf. Robotics and Automation (ICRA)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
Hand Detection and Finger Detection on Live Feed

Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c

Chauhan Mahaveer 2 Jan 02, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Contextual speed detection for python

Speed Prediction using Optical Flow and 2D CNN About the challenge: Comma.AI Speed Challenge This challenge was developed by Comma.AI to predict the s

Mahimana Bhatt 2 Dec 16, 2021
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
A tool for extracting text from scanned documents (via OCR), with user-defined post-processing.

The project is based on older versions of tesseract and other tools, and is now superseded by another project which allows for more granular control o

Maxim 32 Jul 24, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral) This repository contains the official PyTorch implementation

Shunsuke Saito 235 Dec 18, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t

QichaoWu 49 Dec 24, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
A simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dropbox account at every 5 seconds

Security Camera using Opencv & Dropbox This is a simple Security Camera created using Opencv in Python where images gets saved in realtime in your Dro

Arpit Rath 1 Jan 31, 2022
Automatic Number Plate Recognition (ANPR) is a highly accurate system capable of reading vehicle number plates without human intervention

ANPR ANPR is therefore the underlying technology used to find a vehicle license/number plate and it, in turn, supplies this information to a next stag

Melih Emin Kılıçoğlu 1 Jan 09, 2022
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022