SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

Overview

SceneCollisionNet

This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more information, please visit the project website.

License

This repo is released under NVIDIA source code license. For business inquiries, please contact [email protected]. For press and other inquiries, please contact Hector Marinez at [email protected]

Install and Setup

Clone and install the repo (we recommend a virtual environment, especially if training or benchmarking, to avoid dependency conflicts):

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .

These commands install the minimum dependencies needed for generating a mesh dataset and then training/benchmarking using Docker. If you instead wish to train or benchmark without using Docker, please first install an appropriate version of PyTorch and corresponding version of PyTorch Scatter for your system. Then, execute these commands:

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .[train]

If benchmarking, replace train in the last command with bench.

To rollout the object rearrangement MPPI policy in a simulated tabletop environment, first download Isaac Gym and place it in the extern folder within this repo. Next, follow the previous installation instructions for training, but replace the train option with policy.

To download the pretrained weights for benchmarking or policy rollout, run bash scripts/download_weights.sh.

Generating a Mesh Dataset

To save time during training/benchmarking, meshes are preprocessed and mesh stable poses are calculated offline. SceneCollisionNet was trained using the ACRONYM dataset. To use this dataset for training or benchmarking, download the ShapeNetSem meshes here (note: you must first register for an account) and the ACRONYM grasps here. Next, build Manifold (an external library included as a submodule):

./scripts/install_manifold.sh

Then, use the following script to generate a preprocessed version of the ACRONYM dataset:

python tools/generate_acronym_dataset.py /path/to/shapenetsem/meshes /path/to/acronym datasets/shapenet

If you have your own set of meshes, run:

python tools/generate_mesh_dataset.py /path/to/meshes datasets/your_dataset_name

Note that this dataset will not include grasp data, which is not needed for training or benchmarking SceneCollisionNet, but is be used for rolling out the MPPI policy.

Training/Benchmarking with Docker

First, install Docker and nvidia-docker2 following the instructions here. Pull the SceneCollisionNet docker image from DockerHub (tag scenecollisionnet) or build locally using the provided Dockerfile (docker build -t scenecollisionnet .). Then, use the appropriate configuration .yaml file in cfg to set training or benchmarking parameters (note that cfg file paths are relative to the Docker container, not the local machine) and run one of the commands below (replacing paths with your local paths as needed; -v requires absolute paths).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_scenecollisionnet_docker.sh

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:ro -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/benchmark_scenecollisionnet_docker.sh

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Loss Plots

To get loss plots while training, run:

docker exec -d <container_name> python3 tools/loss_plots.py /models/<model_name>/log.csv

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/benchmark_results:/benchmark:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/benchmark_baseline_docker.sh

Training/Benchmarking without Docker

First, install system dependencies. The system dependencies listed assume an Ubuntu 18.04 install with NVIDIA drivers >= 450.80.02 and CUDA 10.2. You can adjust the dependencies accordingly for different driver/CUDA versions. Note that the NVIDIA drivers come packaged with EGL, which is used during training and benchmarking for headless rendering on the GPU.

System Dependencies

See Dockerfile for a full list. For training/benchmarking, you will need:

python3-dev
python3-pip
ninja-build
libcudnn8=8.1.1.33-1+cuda10.2
libcudnn8-dev=8.1.1.33-1+cuda10.2
libsm6
libxext6
libxrender-dev
freeglut3-dev
liboctomap-dev
libfcl-dev
gifsicle
libfreetype6-dev
libpng-dev

Python Dependencies

Follow the instructions above to install the necessary dependencies for your use case (either the train, bench, or policy options).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/train_scenecollisionnet.py

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

python tools/train_robotcollisionnet.py

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_scenecollisionnet.py

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

python tools/benchmark_robotcollisionnet.py

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_baseline.py

Policy Rollout

To view a rearrangement MPPI policy rollout in a simulated Isaac Gym tabletop environment, run the following command (note that this requires a local machine with an available GPU and display):

python tools/rollout_policy.py --self-coll-nn weights/self_coll_nn --scene-coll-nn weights/scene_coll_nn --control-frequency 1

There are many possible options for this command that can be viewed using the --help command line argument and set with the appropriate argument. If you get RuntimeError: CUDA out of memory, try reducing the horizon (--mppi-horizon, default 40), number of trajectories (--mppi-num-rollouts, default 200) or collision steps (--mppi-collision-steps, default 10). Note that this may affect policy performance.

Citation

If you use this code in your own research, please consider citing:

@inproceedings{danielczuk2021object,
  title={Object Rearrangement Using Learned Implicit Collision Functions},
  author={Danielczuk, Michael and Mousavian, Arsalan and Eppner, Clemens and Fox, Dieter},
  booktitle={Proc. IEEE Int. Conf. Robotics and Automation (ICRA)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports

A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports "with"-syntax.

Patrice Matz 0 Oct 30, 2021
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Image Smoothing and Blurring Using OpenCV

Image-Smoothing-and-Blurring-Using-OpenCV This repository contains codes for performing image smoothing and blurring using OpenCV. There are different

Happy N. Monday 3 Feb 15, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
TextBoxes++: A Single-Shot Oriented Scene Text Detector

TextBoxes++: A Single-Shot Oriented Scene Text Detector Introduction This is an application for scene text detection (TextBoxes++) and recognition (CR

Minghui Liao 930 Jan 04, 2023
Tracking the latest progress in Scene Text Detection and Recognition: Must-read papers well organized

SceneTextPapers Tracking the latest progress in Scene Text Detection and Recognition: must-read papers well organized Information about this repositor

Shangbang Long 763 Jan 01, 2023
learn how to use Gesture Control to change the volume of a computer

Volume-Control-using-gesture In this project we are going to learn how to use Gesture Control to change the volume of a computer. We first look into h

Diwas Pandey 49 Sep 22, 2022
CTPN + DenseNet + CTC based end-to-end Chinese OCR implemented using tensorflow and keras

简介 基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别 文本检测:CTPN 文本识别:DenseNet + CTC 环境部署 sh setup.sh 注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释 Demo 将测试图片放入test_images

Yang Chenguang 2.6k Dec 29, 2022
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images.

Welcome This is an API written in python that uses FastAPI. It is a simple API that can detect discord tokens in Images. Installation There are curren

8 Jul 29, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
Hand Detection and Finger Detection on Live Feed

Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c

Chauhan Mahaveer 2 Jan 02, 2022