Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Overview

Learning What To Do by Simulating the Past

This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) algorithm introduced in the paper "Learning What To Do by Simulating the Past". This code is provided as is, and will not be maintained. Here we describe how to reproduce the experimental results reported in the paper. You can find video of policies trained with Deep RLSP here.

Citation

David Lindner, Rohin Shah, Pieter Abbeel, Anca Dragan. Learning What To Do by Simulating the Past. In International Conference on Learning Representations (ICLR), 2021.

@inproceedings{lindner2021learning,
    title={Learning What To Do by Simulating the Past},
    author={Lindner, David and Shah, Rohin and Abbeel, Pieter and Dragan, Anca},
    booktitle={International Conference on Learning Representations (ICLR)},
    year={2021},
}

Table of Contents

Set up the environment

There are two options to set up the environment to run the code: either using Docker, or setting up the environment manually using Anaconda. We recommend to use the Docker setup.

Docker

You can use Docker to set up the dependencies including MuJoCo automatically. To do this install Docker, then copy a valid MuJoCo key to docker/mjkey.txt, and execute the following commands:

docker build --tag deep-rlsp:1.0 docker
docker run -v `pwd`:/deep-rlsp/ -w /deep-rlsp/ -i -t deep-rlsp:1.0 bash
conda activate deep-rlsp

The first command sets up a container with all required dependencies including MuJoCo. The second command starts an interactive shell inside the container and the third command activates the Anaconda environment set up inside the container. You can now run all experiments inside this container. Note, that you might have to modify docker/Dockerfile to use Tensorflow with GPU support.

Manual setup

Alternatively, you can set up the same Anaconda environment manually. In this case MuJoCo has to be installed locally. If using a non-standard location, the environment variables MUJOCO_PY_MJKEY_PATH and MUJOCO_PY_MUJOCO_PATH have to be set accordingly.

To perform the manual setup, install Anaconda locally and run the following commands to set up the environment:

conda env create -f docker/environment.yml
conda activate deep-rlsp
pip install mujoco-py==2.0.2.9
pip install -e .
conda activate deep-rlsp

This sets up an Anaconda environment with the required dependencies and activates it, which can then be used to run the code.

Reproducing the experiments

Now we describe how to reproduce the experiments described in the paper. We first describe the experiments in Gridworld environments, discussed in Section 3.2, and then the experiments in MuJoCo environments, discussed in Sections 3.3 and 3.4. For each of these we describe how to run Deep RLSP, the ablations discussed in the paper, and GAIL as a baseline.

Gridworld experiments

To run the Gridworld experiments reported in Section 3.2, you first have to train an inverse dynamics model for each environment:

python scripts/train_inverse_dynamics.py --gridworlds RoomDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds ApplesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds TrainDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesEasy-v0
python scripts/train_inverse_dynamics.py --gridworlds RoomBad-v0

The models will be saved in tf_ckpt, and will have names such as tf_ckpt_mlp_RoomDefault-v0_20210313_160730. You might have to create the folder tf_ckpt before running the models.

You can then run the experiments with the following commands:

python src/deep_rlsp/run.py with latent_rlsp_config room_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218
python src/deep_rlsp/run.py with latent_rlsp_config train_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_TrainDefault-v0_20200930_132234
python src/deep_rlsp/run.py with latent_rlsp_config apples_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_ApplesDefault-v0_20200930_132414
python src/deep_rlsp/run.py with latent_rlsp_config batteries_easy inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config batteries_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config room_bad inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218

adapting the paths of the inverse dynamics model.

You can run the "AverageFeatures" ablation by replacing latent_rlsp_config with latent_rlsp_ablation in the commands above.

MuJoCo experiments

To reproduce our experiments in the MuJoCo simulator, that we report in Sections 3.3 and 3.4, you need to perform the following steps:

  1. Obtain an original policy
  2. Run Deep RLSP
  3. Evaluate the results
  4. Compare to baselines / ablations

We now describe each step in turn.

Obtaining an original policy

We consider two different ways of obtaining policies to immitate:

  1. Obtain policy by optimizing a given reward function
  2. Obtain policy by running Dynamics-Aware Unsupervised Discovery of Skills (DADS)

Obtain policy by optimizing a given reward function

To train a policy on the reward function of a given MuJoCo environment, use the scripts/train_sac.py script. With the following commands you can train policies on the environments we discuss in the paper and save them in the policies/ folder:

python scripts/train_sac.py InvertedPendulum-v2 policies/sac_pendulum_6e4 --timesteps 60000
python scripts/train_sac.py HalfCheetah-FW-v2 policies/sac_cheetah_fw_2e6 --timesteps 2000000
python scripts/train_sac.py HalfCheetah-BW-v2 policies/sac_cheetah_bw_2e6 --timesteps 2000000
python scripts/train_sac.py Hopper-v2 policies/sac_hopper_2e6 --timesteps 2000000

This uses the soft actor-critic algorithm to train a policy using the hyperparameters from rl-baselines-zoo. The hyperparameters are defined in src/deep_rlsp/solvers/__init__.py.

For convenience, we provide trained policies in the policies/ folder of this repository.

Obtain policy by running DADS

We run DADS using the code provided by the authors. To reproduce the our experiments, we provide rollouts sampled from the jumping and balancing skills in the folder skills/.

Run Deep RLSP

We are now ready to run the full Deep RLSP algorithm. The main file to run experiments is located at src/deep_rlsp/run_mujoco.py. The following commands reproduce the experiments discussed in the paper:

Pendulum

python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=50

Cheetah running forward

python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=50

Cheetah running backward

python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=50

Hopper

python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=50

Cheetah balancing skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=50

Cheetah jumping skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=50

The results will be saved in the results/ folder. The trained (VAE and dynamics) models will be saved in tf_ckpt.

Evaluate the results

In the paper, we evaluate Deep RLSP in two ways:

  1. Train a new policy on the inferred reward function from Deep RLSP and evaluate this policy (as in Table 1)
  2. Evaluate the policy trained during Deep RLSP (for the balancing and jumping skills)

Train a new policy on the inferred reward function

To produce the results provided in Table 1 in the paper, we run SAC on the final reward function inferred by the Deep RLSP algorithm. To do this run the following command

python scripts/mujoco_evaluate_inferred_reward.py with experiment_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

providing the subfolder of results/ that corresponds to the experiment you want to evaluate. This creates a sub-folder in results/mujoco/eval that contains the trained policy.

Then, to evaluate this policy, run

python scripts/evaluate_policy.py results/mujoco/eval/20200605_203113_20200603_220928_InvertedPendulum-v2_optimal_1/policy.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

Evaluate the policy trained during Deep RLSP

The policies trained during Deep RLSP are saved in the results folder of a specific run as rlsp_policy_1.zip, rlsp_policy_2.zip, ...

To evaluate these policies, run

python scripts/evaluate_policy.py results/mujoco/20200528_150813_InvertedPendulum-v2_optimal/rlsp_policy_112.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

AverageFeatures and Waypoints ablations

To ensure comparability with a limited number of random seeds, we run the ablations with the same trained VAE and dynamics models and the same input states as Deep RLSP. This can be done the following commands:

python src/deep_rlsp/ablation_AverageFeatures.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal
python src/deep_rlsp/ablation_Waypoints.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

passing a folder containing the corresponding results of Deep RLSP as an argument. The policy returned by this baseline algorithm can be found in results/mujoco/, and they can also be visualized and evaluated using the scripts/evaluate_policy.py script.

Compare to GAIL

Running Generative Adversarial Imitation Learning (GAIL) requires the imitation library. You can install it using:

pip install imitation==0.1.1

To run GAIL, we provide demonstrations from the expert policies in the correct format in the demonstrations folder. You can create demonstration data from already trained expert policies by running:

python scripts/create_demonstrations.py policies/sac_cheetah_fw_2e6.zip demonstrations/sac_cheetah_fw_traj_len_{}_seed_{}.pkl 10 generate_seed HalfCheetah-FW-v2 1

Then you can run GAIL on the demonstration data by running:

python scripts/run_gail.py with gail half_cheetah env_name='HalfCheetah-FW-v2' rollout_path=demonstrations/sac_cheetah_fw_traj_len_1_seed_22750069.pkl log_dir=./gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/

To visualize the resulting policies:

python scripts/evaluate_policy.py gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/checkpoints/final/gen_policy gail HalfCheetah-FW-v2 --render --out_video=videos/gail_balancing_len_1.mp4

Code quality

We use black for code formatting, flake8 for linting, and mypy to check type hints. You can run all checks with bash code_checks.sh and unit tests with python setup.py test.

Owner
Center for Human-Compatible AI
CHAI seeks to develop the conceptual and technical wherewithal to reorient the general thrust of AI research towards provably beneficial systems.
Center for Human-Compatible AI
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022