SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

Overview

SPRING

PWC

PWC

PWC

PWC

This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021.

With SPRING you can perform both state-of-the-art Text-to-AMR parsing and AMR-to-Text generation without many cumbersome external components. If you use the code, please reference this work in your paper:

@inproceedings{bevilacqua-etal-2021-one,
    title = {One {SPRING} to Rule Them Both: {S}ymmetric {AMR} Semantic Parsing and Generation without a Complex Pipeline},
    author = {Bevilacqua, Michele and Blloshmi, Rexhina and Navigli, Roberto},
    booktitle = {Proceedings of AAAI},
    year = {2021}
}

Pretrained Checkpoints

Here we release our best SPRING models which are based on the DFS linearization.

Text-to-AMR Parsing

AMR-to-Text Generation

If you need the checkpoints of other experiments in the paper, please send us an email.

Installation

cd spring
pip install -r requirements.txt
pip install -e .

The code only works with transformers < 3.0 because of a disrupting change in positional embeddings. The code works fine with torch 1.5. We recommend the usage of a new conda env.

Train

Modify config.yaml in configs. Instructions in comments within the file. Also see the appendix.

Text-to-AMR

python bin/train.py --config configs/config.yaml --direction amr

Results in runs/

AMR-to-Text

python bin/train.py --config configs/config.yaml --direction text

Results in runs/

Evaluate

Text-to-AMR

python bin/predict_amrs.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.amr.txt \
    --pred-path data/tmp/amr2.0/pred.amr.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.amr.txt and pred.amr.txt will contain, respectively, the concatenated gold and the predictions.

To reproduce our paper's results, you will also need need to run the BLINK entity linking system on the prediction file (data/tmp/amr2.0/pred.amr.txt in the previous code snippet). To do so, you will need to install BLINK, and download their models:

git clone https://github.com/facebookresearch/BLINK.git
cd BLINK
pip install -r requirements.txt
sh download_blink_models.sh
cd models
wget http://dl.fbaipublicfiles.com/BLINK//faiss_flat_index.pkl
cd ../..

Then, you will be able to launch the blinkify.py script:

python bin/blinkify.py \
    --datasets data/tmp/amr2.0/pred.amr.txt \
    --out data/tmp/amr2.0/pred.amr.blinkified.txt \
    --device cuda \
    --blink-models-dir BLINK/models

To have comparable Smatch scores you will also need to use the scripts available at https://github.com/mdtux89/amr-evaluation, which provide results that are around ~0.3 Smatch points lower than those returned by bin/predict_amrs.py.

AMR-to-Text

python bin/predict_sentences.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.text.txt \
    --pred-path data/tmp/amr2.0/pred.text.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.text.txt and pred.text.txt will contain, respectively, the concatenated gold and the predictions. For BLEU, chrF++, and Meteor in order to be comparable you will need to tokenize both gold and predictions using JAMR tokenizer. To compute BLEU and chrF++, please use bin/eval_bleu.py. For METEOR, use https://www.cs.cmu.edu/~alavie/METEOR/ . For BLEURT don't use tokenization and run the eval with https://github.com/google-research/bleurt. Also see the appendix.

Linearizations

The previously shown commands assume the use of the DFS-based linearization. To use BFS or PENMAN decomment the relevant lines in configs/config.yaml (for training). As for the evaluation scripts, substitute the --penman-linearization --use-pointer-tokens line with --use-pointer-tokens for BFS or with --penman-linearization for PENMAN.

License

This project is released under the CC-BY-NC-SA 4.0 license (see LICENSE). If you use SPRING, please put a link to this repo.

Acknowledgements

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 and the ELEXIS project No. 731015 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under the grant "Dipartimenti di eccellenza 2018-2022" of the Department of Computer Science of the Sapienza University of Rome.

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022