A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

Overview

ViZDoom Build Status

http://vizdoom.cs.put.edu.pl

ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.

ViZDoom is based on ZDoom to provide the game mechanics.

ViZDoom is the platform for Visual Doom Competition @ CIG 2017. :goberserk:

Features

  • Multi-platform,
  • API for C++, Lua, Java and Python,
  • Easy-to-create custom scenarios (examples available),
  • Async and sync single-player and multi-player modes,
  • Fast (up to 7000 fps in sync mode, single threaded),
  • Customizable resolution and rendering parameters,
  • Access to the depth buffer (3D vision)
  • Automatic labeling game objects visible in the frame
  • Off-screen rendering,
  • Episodes recording,
  • Time scaling in async mode,
  • Lightweight (few MBs).

ViZDoom API is reinforcement learning friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning, etc.).

Cite as

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek & Wojciech Jaśkowski, ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning, IEEE Conference on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, 2016 (arXiv:1605.02097)

Bibtex:

@inproceedings{Kempka2016ViZDoom,
  author    = {Micha{\l} Kempka and Marek Wydmuch and Grzegorz Runc and Jakub Toczek and Wojciech Ja\'skowski},
  title     = {{ViZDoom}: A {D}oom-based {AI} Research Platform for Visual Reinforcement Learning},
  booktitle = {IEEE Conference on Computational Intelligence and Games},  
  year      = {2016},
  url       = {http://arxiv.org/abs/1605.02097},
  address   = {Santorini, Greece},
  Month     = {Sep},
  Pages     = {341--348},
  Publisher = {IEEE},
  Note      = {The best paper award}
}

Installation/Building instructions

Windows build

For Windows we are providing compiled runtime binaries and development libraries:

1.1.5pre (2017-10-22):

Examples

Before running the provided examples, make sure that freedoom2.wad is placed in the same directory as the ViZDoom executable (on Linux and macOS it should be done automatically by the building process):

  • Python (contain learning examples implemented in PyTorch, TensorFlow and Theano)
  • C++
  • Lua (contain learning example implemented in Torch)
  • Java

Python examples are currently the richest, so we recommend to look at them, even if you plan to use other language. API is almost identical for all languages.

See also the tutorial.

Documentation

Detailed description of all types and methods:

Changelog for 1.1.X version.

Contributions

This project is maintained and developed in our free time. All bug fixes, new examples and scenarios are welcome! We are also open to features ideas and design suggestions.

License

Code original to ViZDoom is under MIT license. ZDoom uses code from several sources with varying licensing schemes.

Owner
Hyeonwoo Noh
Hyeonwoo Noh
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022