Code for the upcoming CVPR 2021 paper

Overview

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth

Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael FirmanCVPR 2021

[Link to paper]

We introduce ManyDepth, an adaptive approach to dense depth estimation that can make use of sequence information at test time, when it is available.

  • Self-supervised: We train from monocular video only. No depths or poses are needed at training or test time.
  • Good depths from single frames; even better depths from short sequences.
  • Efficient: Only one forward pass at test time. No test-time optimization needed.
  • State-of-the-art self-supervised monocular-trained depth estimation on KITTI and CityScapes.

Overview

Cost volumes are commonly used for estimating depths from multiple input views:

Cost volume used for aggreagting sequences of frames

However, cost volumes do not easily work with self-supervised training.

Baseline: Depth from cost volume input without our contributions

In our paper, we:

  • Introduce an adaptive cost volume to deal with unknown scene scales
  • Fix problems with moving objects
  • Introduce augmentations to deal with static cameras and start-of-sequence frames

These contributions enable cost volumes to work with self-supervised training:

ManyDepth: Depth from cost volume input with our contributions

With our contributions, short test-time sequences give better predictions than methods which predict depth from just a single frame.

ManyDepth vs Monodepth2 depths and error maps

✏️ 📄 Citation

If you find our work useful or interesting, please cite our paper:

@inproceedings{watson2021temporal,
    author = {Jamie Watson and
              Oisin Mac Aodha and
              Victor Prisacariu and
              Gabriel Brostow and
              Michael Firman},
    title = {{The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth}},
    booktitle = {Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

📈 Results

Our ManyDepth method outperforms all previous methods in all subsections across most metrics, whether or not the baselines use multiple frames at test time. See our paper for full details.

KITTI results table

👀 Reproducing Paper Results

To recreate the results from our paper, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.train \
    --data_path <your_KITTI_path> \
    --log_dir <your_save_path>  \
    --model_name <your_model_name>

Depending on the size of your GPU, you may need to set --batch_size to be lower than 12. Additionally you can train a high resolution model by adding --height 320 --width 1024.

For instructions on downloading the KITTI dataset, see Monodepth2

To train a CityScapes model, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.train \
    --data_path <your_preprocessed_cityscapes_path> \
    --log_dir <your_save_path>  \
    --model_name <your_model_name> \
    --dataset cityscapes_preprocessed \
    --split cityscapes_preprocessed \
    --freeze_teacher_epoch 5 \
    --height 192 --width 512

This assumes you have already preprocessed the CityScapes dataset using SfMLearner's prepare_train_data.py script. We used the following command:

python prepare_train_data.py \
    --img_height 512 \
    --img_width 1024 \
    --dataset_dir <path_to_downloaded_cityscapes_data> \
    --dataset_name cityscapes \
    --dump_root <your_preprocessed_cityscapes_path> \
    --seq_length 3 \
    --num_threads 8

Note that while we use the --img_height 512 flag, the prepare_train_data.py script will save images which are 1024x384 as it also crops off the bottom portion of the image. You could probably save disk space without a loss of accuracy by preprocessing with --img_height 256 --img_width 512 (to create 512x192 images), but this isn't what we did for our experiments.

💾 Pretrained weights and evaluation

You can download weights for some pretrained models here:

To evaluate a model on KITTI, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.evaluate_depth \
    --data_path <your_KITTI_path> \
    --load_weights_folder <your_model_path>
    --eval_mono

Make sure you have first run export_gt_depth.py to extract ground truth files.

And to evaluate a model on Cityscapes, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.evaluate_depth \
    --data_path <your_cityscapes_path> \
    --load_weights_folder <your_model_path>
    --eval_mono \
    --eval_split cityscapes

During evaluation, we crop and evaluate on the middle 50% of the images.

We provide ground truth depth files HERE, which were converted from pixel disparities using intrinsics and the known baseline. Download this and unzip into splits/cityscapes.

🖼 Running on your own images

We provide some sample code in test_simple.py which demonstrates multi-frame inference. This predicts depth for a sequence of two images cropped from a dashcam video. Prediction also requires an estimate of the intrinsics matrix, in json format. For the provided test images, we have estimated the intrinsics to be equivalent to those of the KITTI dataset. Note that the intrinsics provided in the json file are expected to be in normalised coordinates.

Download and unzip model weights from one of the links above, and then run the following command:

python -m manydepth.test_simple \
    --target_image_path assets/test_sequence_target.jpg \
    --source_image_path assets/test_sequence_source.jpg \
    --intrinsics_json_path assets/test_sequence_intrinsics.json \
    --model_path path/to/weights

A predicted depth map rendering will be saved to assets/test_sequence_target_disp.jpeg.

👩‍⚖️ License

Copyright © Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022