Code for the upcoming CVPR 2021 paper

Overview

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth

Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael FirmanCVPR 2021

[Link to paper]

We introduce ManyDepth, an adaptive approach to dense depth estimation that can make use of sequence information at test time, when it is available.

  • Self-supervised: We train from monocular video only. No depths or poses are needed at training or test time.
  • Good depths from single frames; even better depths from short sequences.
  • Efficient: Only one forward pass at test time. No test-time optimization needed.
  • State-of-the-art self-supervised monocular-trained depth estimation on KITTI and CityScapes.

Overview

Cost volumes are commonly used for estimating depths from multiple input views:

Cost volume used for aggreagting sequences of frames

However, cost volumes do not easily work with self-supervised training.

Baseline: Depth from cost volume input without our contributions

In our paper, we:

  • Introduce an adaptive cost volume to deal with unknown scene scales
  • Fix problems with moving objects
  • Introduce augmentations to deal with static cameras and start-of-sequence frames

These contributions enable cost volumes to work with self-supervised training:

ManyDepth: Depth from cost volume input with our contributions

With our contributions, short test-time sequences give better predictions than methods which predict depth from just a single frame.

ManyDepth vs Monodepth2 depths and error maps

✏️ 📄 Citation

If you find our work useful or interesting, please cite our paper:

@inproceedings{watson2021temporal,
    author = {Jamie Watson and
              Oisin Mac Aodha and
              Victor Prisacariu and
              Gabriel Brostow and
              Michael Firman},
    title = {{The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth}},
    booktitle = {Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

📈 Results

Our ManyDepth method outperforms all previous methods in all subsections across most metrics, whether or not the baselines use multiple frames at test time. See our paper for full details.

KITTI results table

👀 Reproducing Paper Results

To recreate the results from our paper, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.train \
    --data_path <your_KITTI_path> \
    --log_dir <your_save_path>  \
    --model_name <your_model_name>

Depending on the size of your GPU, you may need to set --batch_size to be lower than 12. Additionally you can train a high resolution model by adding --height 320 --width 1024.

For instructions on downloading the KITTI dataset, see Monodepth2

To train a CityScapes model, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.train \
    --data_path <your_preprocessed_cityscapes_path> \
    --log_dir <your_save_path>  \
    --model_name <your_model_name> \
    --dataset cityscapes_preprocessed \
    --split cityscapes_preprocessed \
    --freeze_teacher_epoch 5 \
    --height 192 --width 512

This assumes you have already preprocessed the CityScapes dataset using SfMLearner's prepare_train_data.py script. We used the following command:

python prepare_train_data.py \
    --img_height 512 \
    --img_width 1024 \
    --dataset_dir <path_to_downloaded_cityscapes_data> \
    --dataset_name cityscapes \
    --dump_root <your_preprocessed_cityscapes_path> \
    --seq_length 3 \
    --num_threads 8

Note that while we use the --img_height 512 flag, the prepare_train_data.py script will save images which are 1024x384 as it also crops off the bottom portion of the image. You could probably save disk space without a loss of accuracy by preprocessing with --img_height 256 --img_width 512 (to create 512x192 images), but this isn't what we did for our experiments.

💾 Pretrained weights and evaluation

You can download weights for some pretrained models here:

To evaluate a model on KITTI, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.evaluate_depth \
    --data_path <your_KITTI_path> \
    --load_weights_folder <your_model_path>
    --eval_mono

Make sure you have first run export_gt_depth.py to extract ground truth files.

And to evaluate a model on Cityscapes, run:

CUDA_VISIBLE_DEVICES=<your_desired_GPU> \
python -m manydepth.evaluate_depth \
    --data_path <your_cityscapes_path> \
    --load_weights_folder <your_model_path>
    --eval_mono \
    --eval_split cityscapes

During evaluation, we crop and evaluate on the middle 50% of the images.

We provide ground truth depth files HERE, which were converted from pixel disparities using intrinsics and the known baseline. Download this and unzip into splits/cityscapes.

🖼 Running on your own images

We provide some sample code in test_simple.py which demonstrates multi-frame inference. This predicts depth for a sequence of two images cropped from a dashcam video. Prediction also requires an estimate of the intrinsics matrix, in json format. For the provided test images, we have estimated the intrinsics to be equivalent to those of the KITTI dataset. Note that the intrinsics provided in the json file are expected to be in normalised coordinates.

Download and unzip model weights from one of the links above, and then run the following command:

python -m manydepth.test_simple \
    --target_image_path assets/test_sequence_target.jpg \
    --source_image_path assets/test_sequence_source.jpg \
    --intrinsics_json_path assets/test_sequence_intrinsics.json \
    --model_path path/to/weights

A predicted depth map rendering will be saved to assets/test_sequence_target_disp.jpeg.

👩‍⚖️ License

Copyright © Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022