PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

Overview

StarEnhancer

StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral)

Abstract: Image enhancement is a subjective process whose targets vary with user preferences. In this paper, we propose a deep learning-based image enhancement method covering multiple tonal styles using only a single model dubbed StarEnhancer. It can transform an image from one tonal style to another, even if that style is unseen. With a simple one-time setting, users can customize the model to make the enhanced images more in line with their aesthetics. To make the method more practical, we propose a well-designed enhancer that can process a 4K-resolution image over 200 FPS but surpasses the contemporaneous single style image enhancement methods in terms of PSNR, SSIM, and LPIPS. Finally, our proposed enhancement method has good interactability, which allows the user to fine-tune the enhanced image using intuitive options.

StarEnhancer

Getting started

Install

We test the code on PyTorch 1.8.1 + CUDA 11.1 + cuDNN 8.0.5, and close versions also work fine.

pip install -r requirements.txt

We mainly train the model on RTX 2080Ti * 4, but a smaller mini batch size can also work.

Prepare

You can generate your own dataset, or download the one we generate.

The final file path should be the same as the following:

┬─ save_model
│   ├─ stylish.pth.tar
│   └─ ... (model & embedding)
└─ data
    ├─ train
    │   ├─ 01-Experts-A
    │   │   ├─ a0001.jpg
    │   │   └─ ... (id.jpg)
    │   └─ ... (style folder)
    ├─ valid
    │   └─ ... (style folder)
    └─ test
        └─ ... (style folder)

Download

Data and pretrained models are available on GoogleDrive.

Generate

  1. Download raw data from MIT-Adobe FiveK Dataset.
  2. Download the modified Lightroom database fivek.lrcat, and replace the original database with it.
  3. Generate dataset in JPEG format with quality 100, which can refer to this issue.
  4. Run generate_dataset.py in data folder to generate dataset.

Train

Firstly, train the style encoder:

python train_stylish.py

Secondly, fetch the style embedding for each sample in the train set:

python fetch_embedding.py

Lastly, train the curve encoder and mapping network:

python train_enhancer.py

Test

Just run:

python test.py

Testing LPIPS requires about 10 GB GPU memory, and if an OOM occurs, replace the following lines

lpips_val = loss_fn_alex(output * 2 - 1, target_img * 2 - 1).item()

with

lpips_val = 0

Notes

Due to agreements, we are unable to release part of the source code. This repository provides a pure python implementation for research use. There are some differences between the repository and the paper as follows:

  1. The repository uses a ResNet-18 w/o BN as the curve encoder's backbone, and the paper uses a more lightweight model.
  2. The paper uses CUDA to implement the color transform function, and the repository uses torch.gather to implement it.
  3. The repository removes some tricks used in training lightweight models.

Overall, this repository can achieve higher performance, but will be slightly slower.

Comments
  • Multi-style, unpaired setting

    Multi-style, unpaired setting

    您好,在多风格非配对图场景,能否交换source和target的位置,并将得到的output_A和output_B进一步经过enhancer,得到recover_A和recover_B。最后计算l1_loss(source, recover_A)和l1_loss(target, recover_B)及Triplet_loss(output_A,target, source) 和 Triplet_loss(output_B,source,target)

    def train(train_loader, mapping, enhancer, criterion, optimizer):
        losses = AverageMeter()
        criterionTriplet = torch.nn.TripletMarginLoss(margin=1.0, p=2)
        FEModel = Feature_Extract_Model().cuda()
    
        mapping.train()
        enhancer.train()
    
        for (source_img, source_center, target_img, target_center) in train_loader:
            source_img = source_img.cuda(non_blocking=True)
            source_center = source_center.cuda(non_blocking=True)
            target_img = target_img.cuda(non_blocking=True)
            target_center = target_center.cuda(non_blocking=True)
    
            style_A = mapping(source_center)
            style_B = mapping(target_center)
    
            output_A = enhancer(source_img, style_A, style_B)
            output_B = enhancer(target_img, style_B, style_A)
            recoverA = enhancer(output_A, style_B, style_A)
            recoverB = enhancer(output_B, style_A, style_B)
    
            source_img_feature = FEModel(source_img)
            target_img_feature = FEModel(target_img)
            output_A_feature = FEModel(output_A)
            output_B_feature = FEModel(output_B)
    
            loss_l1 = criterion(recoverA, source_img) + criterion(recoverB, target_img)
            loss_triplet = criterionTriplet(output_B_feature, source_img_feature, target_img_feature) + \
                           criterionTriplet(output_A_feature, target_img_feature, source_img_feature)
            loss = loss_l1 + loss_triplet
    
            losses.update(loss.item(), args.t_batch_size)
    
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
    
        return losses.avg
    
    opened by jxust01 4
  • Questions about dataset preparation

    Questions about dataset preparation

    您好,我想用您的工程跑一下自己的数据,现在有输入,输出一组数据对,训练数据里面A-E剩下的4种效果是怎样生成的呢,这些目标效果数据能否是非成对的呢?如果只有一种风格,能否A-E目标效果都拷贝成一样的数据呢,在train_enhancer.py所训练的单风格脚本是需要embeddings.npy文件,这个文件在单风格训练时是必须的吗

    opened by zener90818 4
  • Dataset processing

    Dataset processing

    你好,我在您提供的fivek.lrcat没找到 DeepUPE issue里的"(default) input with ExpertC"。请问单风格实验的输入是下图中的“InputAsShotZeroed”还是“(Q)InputZeroed with ExpertC WhiteBalance” image

    opened by madfff 2
  • Configure Renovate

    Configure Renovate

    WhiteSource Renovate

    Welcome to Renovate! This is an onboarding PR to help you understand and configure settings before regular Pull Requests begin.

    🚦 To activate Renovate, merge this Pull Request. To disable Renovate, simply close this Pull Request unmerged.


    Detected Package Files

    • requirements.txt (pip_requirements)

    Configuration Summary

    Based on the default config's presets, Renovate will:

    • Start dependency updates only once this onboarding PR is merged
    • Enable Renovate Dependency Dashboard creation
    • If semantic commits detected, use semantic commit type fix for dependencies and chore for all others
    • Ignore node_modules, bower_components, vendor and various test/tests directories
    • Autodetect whether to pin dependencies or maintain ranges
    • Rate limit PR creation to a maximum of two per hour
    • Limit to maximum 20 open PRs at any time
    • Group known monorepo packages together
    • Use curated list of recommended non-monorepo package groupings
    • Fix some problems with very old Maven commons versions
    • Ignore spring cloud 1.x releases
    • Ignore http4s digest-based 1.x milestones
    • Use node versioning for @types/node
    • Limit concurrent requests to reduce load on Repology servers until we can fix this properly, see issue 10133

    🔡 Would you like to change the way Renovate is upgrading your dependencies? Simply edit the renovate.json in this branch with your custom config and the list of Pull Requests in the "What to Expect" section below will be updated the next time Renovate runs.


    What to Expect

    With your current configuration, Renovate will create 1 Pull Request:

    Pin dependency torch to ==1.10.0
    • Schedule: ["at any time"]
    • Branch name: renovate/pin-dependencies
    • Merge into: main
    • Pin torch to ==1.10.0

    ❓ Got questions? Check out Renovate's Docs, particularly the Getting Started section. If you need any further assistance then you can also request help here.


    This PR has been generated by WhiteSource Renovate. View repository job log here.

    opened by renovate[bot] 1
  • The results are not the same as the paper

    The results are not the same as the paper

    I am the author.

    Some peers have emailed me asking about the performance of the open source model that does not agree with the results in the paper. As stated in the README, the model is not the model of the paper, but the performance is similar. The exact result should be: PSNR: 25.41, SSIM: 0.942, LPIPS: 0.085

    If you find that your result is not this, then it may be that the JPEG codec is different, which is related to the version of opencv and how it is installed.

    You can uninstall your opencv (either with pip or conda) and reinstall it using pip (it must be pip, because conda installs a different JPEG codec):

    pip install opencv-python==4.5.5.62​
    
    opened by IDKiro 0
Owner
IDKiro
Stroll in the abyss
IDKiro
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021