Laser device for neutralizing - mosquitoes, weeds and pests

Overview

Laser device for neutralizing - mosquitoes, weeds and pests (in progress)

Tweet
Hardware demonstrations
Hardware demonstrations

Here I will post information for creating a laser device.

alt tag

A warning!!

Don't use the power laser!

The main limiting factor in the development of this technology is the danger of the laser may damage the eyes. The laser can enter a blood vessel and clog it, it can get into a blind spot where nerves from all over the eye go to the brain, you can burn out a line of "pixels" And then the damaged retina can begin to flake off, and this is the path to complete and irreversible loss of vision. This is dangerous because a person may not notice at the beginning of damage from a laser hit: there are no pain receptors there, the brain completes objects in damaged areas (remapping of dead pixels), and only when the damaged area becomes large enough person starts to notice that some objects not visible. We can develop additional security systems, such as human detection, audio sensors, etc. But in any case, we are not able to make the installation 100% safe, since even a laser can be reflected and damage the eye of a person who is not in the field of view of the device and at a distant distance. Therefore, this technology should not be used at home. My strong recommendation - don't use the power laser! I recommend making a device that will track an object using a safe laser pointer.

How It Works

To detect x,y coordinates initially we used Haar cascades in RaspberryPI after that yolov4-tiny in Jetson nano. For Y coordinates - stereo vision.
Calculation necessary value for the angle of mirrors.
RaspberryPI/JetsonNano by SPI sends a command for galvanometer via DAC mcp4922. Electrical scheme (here). From mcp4922 bibolar analog signal go to amplifair. Finally, we have -12 and + 12 V for control positions of the mirrors.

General information

The principle of operation
alt tag
Single board computer to processes the digital signal from the camera and determines positioning to the object, and transmits the digital signal to the analog display - 3, where digital-to-analog converts the signal to the range of 0-5V. Using a board with an operational amplifier, we get a bipolar voltage, from which the boards with the motor driver for the galvanometer are powered - 4, from where the signal goes to galvanometers -7. The galvanometer uses mirrors to change the direction of the laser - 6. The system is powered by the power supply - 5. Cameras 2 determine the distance to the object. The camera detects mosquito and transmits data to the galvanometer, which sets the mirrors in the correct position, and then the laser turns on.

Dimensions

alt tag
1 - PI cameras, 2 - galvanometer, 3 - Jetson nano, 4 - adjusting the position to the object, 5 - laser device, 6 - power supply, 7 - galvanometer driver boards, 8 - analog conversion boards

Galvanometer setting

In practice, the maximum deflection angle of the mirrors is set at the factory, but before use, it is necessary to check, for example, according to the documentation, our galvanometer had a step width of 30, but as it turned out we have only 20 alt tag
Maximum and minimum positions of galvanometer mirrors:
a - lower position - 350 for x mirror;
b - upper position - 550 for x mirror;
c - lower position - 00 for y mirror;
d - upper position - 250 for y mirror;

Determining the coordinates of an object

X,Y - coordinate

alt tag

Z-coordinate

We created GUI, source here. At the expense of computer vision, the position of the object in the X, Y plane is determined - based on which its ROI area is taken. Then we use stereo vision to compile a depth map and for a given ROI with the NumPy library tool - np.average we calculated the average value for the pixels of this area, which will allow us to calculate the distance to the object.
alt tag

You can find more detail in the published paper in preprint - Low-Cost Stereovision System (Disparity Map) For Few Dollars

Determining the angle of galvanometer mirror

angle of galvanometer mirror theory

The laser beam obeys all the optical laws of physics, therefore, depending on the design of the galvanometer, the required angle of inclination of the mirror – α, can be calculated through the geometrical formulas. In our case, through the tangent of the angle α, where it is equal to the ratio of the opposing side – X(Y) (position calculated by deep learning) to the adjacent side - Z (calculated by stereo vision).
alt tag

angle of galvanometer mirror practice

alt tag

We need more FPS

For single boards, computers are actual problems with FPS. For one object with Jetson was reached the next result for the Yolov4-tiny model.

Framework
with Keras: 4-5 FPS
with Darknet: 12-15 FPS
with Darknet Tensor RT: 24-27 FPS
with Darknet DeepStream: 23-26 FPS
with tkDNN: 30-35 FPS

You can find more detail in the published paper in arxiv - Increasing FPS for single board computers and embedded computers in 2021 (Jetson nano and YOVOv4-tiny). Practice and review

Demonstrations

In this video - a laser (the red point) tries to catch a yellow LED. It is an adjusting process but in fact, instead, a yellow LED can be a mosquito, and instead, the red laser can be a powerful laser.
Hardware demonstrations

Security questions

An additional device - a security module that will turn off the laser:

  • Use additional cameras to fix people
  • Audio sensors to capture voice and noise
  • To mechanically shoot down the laser
  • To use a thermal camera if there is any warm effect, turn it off - this is probably also possible to protect against fires consider not to overheat.
  • Teach the system to record the process of laser reflection from any random glass or other mirror surfaces (maybe before turning on the power laser - for checking turn on the simple laser).

Publication and Citation

  • Ildar, R. (2021). Machine vision for low-cost remote control of mosquitoes by power laser. Journal of Real-Time Image Processing
    availabe here
  • Rakhmatulin I, Andreasen C. (2020). A Concept of a Compact and Inexpensive Device for Controlling Weeds with Laser Beams. Agronomy
    availabe here
  • Rakhmatuiln I, Kamilaris A, Andreasen C. Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review. Remote Sensing. 2021; 13(21):4486. https://doi.org/10.3390/rs13214486

Contacts

For any questions write to me by mail - [email protected]

Owner
Ildaron
Electronic research engineer. Hardware. Machine vision.
Ildaron
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023