Bayesian algorithm execution (BAX)

Overview

Bayesian Algorithm Execution (BAX)

Code for the paper:

Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
Willie Neiswanger, Ke Alexander Wang, Stefano Ermon
International Conference on Machine Learning (ICML), 2021
arXiv:2104.09460

One-sentence summary

Extending Bayesian optimization from estimating global optima to estimating other function properties defined by the output of algorithms.

Abstract

In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations. One example is budget constrained global optimization of f, for which Bayesian optimization is a popular method. Other properties of interest include local optima, level sets, integrals, or graph-structured information induced by f. Often, we can find an algorithm A to compute the desired property, but it may require far more than T queries to execute. Given such an A, and a prior distribution over f, we refer to the problem of inferring the output of A using T evaluations as Bayesian Algorithm Execution (BAX).

To tackle this problem, we present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output. Applying this to Dtra's algorithm, for instance, we infer shortest paths in synthetic and real-world graphs with black-box edge costs. Using evolution strategies, we yield variants of Bayesian optimization that target local, rather than global, optima. On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm. Our method is closely connected to other Bayesian optimal experimental design procedures such as entropy search methods and optimal sensor placement using Gaussian processes.

Installation

This repo requires Python 3.6+. To install Python dependencies, cd into this repo and run:

$ pip install -r requirements/requirements.txt
$ pip install -r requirements/requirements_gpfs.txt

Note that this installs dependencies for GPflowSampling, which our implementation uses to efficiently run algorithms on GP posterior function samples.

For some functionality, you'll also need to compile a Stan model by running:

$ python bax/models/stan/compile_models.py

Examples

[WIP] More examples are in the process of being merged into this branch. Note that the following API and functionality may undergo changes, as this library is still in the early stages.

First make sure this repo directory is on the PYTHONPATH, e.g. by running:

$ source shell/add_pwd_to_pythonpath.sh

Example 1: Estimating shortest paths in graphs

For a demo on a 10x10 grid graph, run:

$ python examples/dijkstra/bax_grid10_viz_simple_demo.py

To produce images for an animation on a 20x20 grid graph, run:

$ python examples/dijkstra/bax_grid20_animation.py

Example 2: Bayesian local optimization

For a demo on a two-dimensional optimization problem, run:

$ python examples/branin/bax_viz2d_simple_demo.py

 

Example 3: Top-k estimation

For a demo on a top-10 estimation task over a discrete set of points, run:

$ python examples/topk/bax_simple_demo.py

Citation

Please cite our paper if you find this project helpful:

@inproceedings{neiswanger2021bayesian,
  title         = {Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information},
  author        = {Neiswanger, Willie and Wang, Ke Alexander and Ermon, Stefano},
  booktitle     = {International Conference on Machine Learning},
  year          = {2021},
  organization  = {PMLR}
}
Owner
Willie Neiswanger
Research in probabilistic machine learning & AI, uncertainty quantification, and decision making. Postdoc at Stanford CS Dept. Previously: PhD at CMU ML Dept.
Willie Neiswanger
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022