Riemann Noise Injection With PyTorch

Overview

Riemann Noise Injection - PyTorch

A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zheng-Jun Zha's paper "Understanding Noise Injection in GANs".

import torch
from riemann_noise_pytorch import RiemannNoise

class Generator(torch.nn.Module):
    def __init__(self):
        ...
        self.riemann_noise = RiemannNoise(128, torch.device("cuda"))
        ...
    def forward(self, x):
        out = self.DownBlock(x)
        out = self.resblock(out)
        out = self.riemann_noise(out)
        out = self.UpBlock(out)
        return out

Citations

@InProceedings{pmlr-v139-feng21g,
  title = 	 {Understanding Noise Injection in GANs},
  author =       {Feng, Ruili and Zhao, Deli and Zha, Zheng-Jun},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {3284--3293},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v139/feng21g/feng21g.pdf},
  url = 	 {https://proceedings.mlr.press/v139/feng21g.html},
  abstract = 	 {Noise injection is an effective way of circumventing overfitting and enhancing generalization in machine learning, the rationale of which has been validated in deep learning as well. Recently, noise injection exhibits surprising effectiveness when generating high-fidelity images in Generative Adversarial Networks (GANs) (e.g. StyleGAN). Despite its successful applications in GANs, the mechanism of its validity is still unclear. In this paper, we propose a geometric framework to theoretically analyze the role of noise injection in GANs. First, we point out the existence of the adversarial dimension trap inherent in GANs, which leads to the difficulty of learning a proper generator. Second, we successfully model the noise injection framework with exponential maps based on Riemannian geometry. Guided by our theories, we propose a general geometric realization for noise injection. Under our novel framework, the simple noise injection used in StyleGAN reduces to the Euclidean case. The goal of our work is to make theoretical steps towards understanding the underlying mechanism of state-of-the-art GAN algorithms. Experiments on image generation and GAN inversion validate our theory in practice.}
}
@article{Karras2019stylegan2,
  title   = {Analyzing and Improving the Image Quality of {StyleGAN}},
  author  = {Tero Karras and Samuli Laine and Miika Aittala and Janne Hellsten and Jaakko Lehtinen and Timo Aila},
  journal = {CoRR},
  volume  = {abs/1912.04958},
  year    = {2019},
}
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Deep GPs built on top of TensorFlow/Keras and GPflow

GPflux Documentation | Tutorials | API reference | Slack What does GPflux do? GPflux is a toolbox dedicated to Deep Gaussian processes (DGP), the hier

Secondmind Labs 107 Nov 02, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023