Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Related tags

Deep LearningDualTFR
Overview

Learning Tracking Representations via Dual-Branch Fully Transformer Networks

DualTFR

We achieves the runner-ups for both VOT2021ST (short-term) and RT(real-time). The variants of DualTFR take 3rd/4th places of VOT2020RT and 4th places of VOT2020ST

For VOT21 challenge model weight download:

We provide the models of Five trackers SAMN, SAMN_DiMP, DualTFR, DualTFRst, DualTFRon here.

Note that the AlphaRefine (https://github.com/MasterBin-IIAU/AlphaRefine) model and SuperDiMP (https://github.com/visionml/pytracking) model are the same with the original author.

Tracker model quantity model name
SAMN 1 SAMN.tar
SAMN_DiMP 2 super_dimp.pth.tar, SAMN.tar
DualTFR 2 DualTFR.tar, ar.pth.tar
DualTFRst 2 DualTFRst.tar, ar.pth.tar
DualTFRon 2 DualTFRon.tar, ar.pth.tar

Models can be downloaded from BaiduNetDisk or GoogleDrive:

BaiduNetDisk:

https://pan.baidu.com/s/1RHA7HVlXtNEzYPGIjJbQ-g (sruh)

GoogleDrive:

https://drive.google.com/drive/folders/1Z61_mfh2vwzqDxejt5idBOgYhWOCZOr5?usp=sharing

Code will be released soon.

We present a simple Siamese-like Dual-branch network based on solely Transformer networks to learn about tracking features. Given a template and a search image, we divide them into non-overlapping image patches and extract a feature vector for each based on its matching results with others within an attention window. Then for each token, we estimate whether it contains the target object and the corresponding size. The prominent advantage of the approach is that the features are learned from matching, and ultimately, for matching. So the features are aligned with the subsequent object tracking task. The method achieves comparable results comparing to the best-performing methods which first use CNN to extract features and then use Transformer to fuse them. Without bells and whistles, it outperforms the state-of-the-art methods on GOT-10k and VOT2020 benchmarks. In addition, the method achieves real-time inference speed (about 40 fps).

Acknowledgments

Contacts

  • Fei Xie, School of Automation, Southeast University, China, [email protected], wechat: 372998044
Owner
phiphi
phiphi
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021