Styleformer - Official Pytorch Implementation

Overview

Styleformer -- Official PyTorch implementation

Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/2106.07023)

PWC PWC

Requirements

  • We have done all testing and development using 4 Titan RTX GPUs with 24GB.
  • 64-bit Python 3.7 and PyTorch 1.7.1.
  • Python libraries: pip install click requests tqdm pyspng ninja imageio-ffmpeg==0.4.3. We use the Anaconda3 2020.11 distribution which installs most of these by default.

Pretrained pickle

CIFAR-10 Styleformer-Large with FID 2.82 IS 9.94

STL-10 Styleformer-Medium with FID 20.11 IS 10.16

CelebA Styleformer-Linformer with FID 3.66

LSUN-Church Styleformer-Linformer with FID 7.99

Generating images

Pre-trained networks are stored as *.pkl files that can be referenced using local filenames

# Generate images using pretrained_weight 
python generate.py --outdir=out --seeds=100-105 \
    --network=path_to_pkl_file

Outputs from the above commands are placed under out/*.png, controlled by --outdir. Downloaded network pickles are cached under $HOME/.cache/dnnlib, which can be overridden by setting the DNNLIB_CACHE_DIR environment variable. The default PyTorch extension build directory is $HOME/.cache/torch_extensions, which can be overridden by setting TORCH_EXTENSIONS_DIR.

Preparing datasets

CIFAR-10: Download the CIFAR-10 python version and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/cifar10.zip

STL-10: Download the stl-10 dataset 5k training, 100k unlabeled images from STL-10 dataset page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/stl10.zip \
    ---width=48 --height=48

CelebA: Download the CelebA dataset Aligned&Cropped Images from CelebA dataset page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/cifar-10-python.tar.gz --dest=~/datasets/stl10.zip \
    ---width=64 --height=64

LSUN Church: Download the desired categories(church) from the LSUN project page and convert to ZIP archive:

python dataset_tool.py --source=~/downloads/lsun/raw/church_lmdb --dest=~/datasets/lsunchurch.zip \
    --width=128 --height=128

Training new networks

In its most basic form, training new networks boils down to:

python train.py --outdir=~/training-runs --data=~/mydataset.zip --gpus=1 --batch=32 --cfg=cifar --g_dict=256,64,16 \
    --num_layers=1,2,2 --depth=32
  • --g_dict= it means 'Hidden size' in paper, and it must be match with image resolution.
  • --num_layers= it means 'Layers' in paper, and it must be match with image resolution.
  • --depth=32 it means minimum required depth is 32, described in Section 2 at paper.
  • --linformer=1 apply informer to Styleformer.

Please refer to python train.py --help for the full list. To train STL-10 dataset with same setting at paper, please fix the starting resolution 88 to 1212 at training/networks_Generator.py.

Quality metrics

Quality metrics can be computed after the training:

# Pre-trained network pickle: specify dataset explicitly, print result to stdout.
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/lsunchurch.zip \
    --network=path_to_pretrained_lsunchurch_pkl_file
    
python calc_metrics.py --metrics=is50k --data=~/datasets/lsunchurch.zip \
    --network=path_to_pretrained_lsunchurch_pkl_file    

Citation

If you found our work useful, please don't forget to cite

@misc{park2021styleformer,
      title={Styleformer: Transformer based Generative Adversarial Networks with Style Vector}, 
      author={Jeeseung Park and Younggeun Kim},
      year={2021},
      eprint={2106.07023},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

The code is heavily based on the stylegan2-ada-pytorch implementation

Owner
Jeeseung Park
Machine learning
Jeeseung Park
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022